VI. PROPERTIES OF THE VARIABLE NORM RATIO

Seismograms recorded on many channels are available for deconvolution.
What is needed is an inverse filter which will reverse the undesirable
averaging effects of the forward filter. The forward filter drives the
distribution of each channel's reflectivity series towards Gaussian, in-
creases entropy, and decreases kurtosis. If we assume the reflectivity
series are spiky members of the generalized Gaussian family, the forward
filter can be characterized as increasing their shape parameters towards
two.

Design of an inverse filter will be based on reversing these effects.
The inverse filter will be estimated such that its outputs are characterized
by the smallest possible shape parameter. These outputs are thus less
Gaussian, have higher kurtosis and less entropy than the inputs.

In this chapter we assume the recorded seismogram is characterized by
a shape parameter N and the underlying reflectivity series by shape para-
meter Oy + The test statistic developed at the end of the preceding chapter
is a measure of the likelihood that a random sample is characterized by
shape parameter o, and not o - Here it is extended to a multichannel
measure which is the objective function for variable norm deconvolution.
Methods for determining an inverse filter which maximizes this objective

function are the subject of the following chapters.

A. Previous Norm Ratio Methods
In 1977 Wiggins (26) presented an iterative, multichannel method

called Minimum Entropy Deconvolution (MED). MED attempts to account for
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the observed seismograms in terms of a small number of large events and
with the smallest residual error. BAn inverse filter is estimated which
maximizes a measure of the simplicity of the reflectivity series. The

varimax norm ratio,
(6-1)

where m is the number of channels and n is the number of samples, is used
as a measure of simple structure. The varimax norm ratio is analogous to
an arithmetic average over channels of the test statistic for determining
if a random sample is from a distribution a, = 2 and not o, = 4. This
norm ratio is believed best for detecting a spiky reflectivity series in
convolutional noise which is nearly uniform (ul = 4). It is not ideally
suited to the distributions observed from actual reflectivity series and
noise studies.

Claerbout realized this and consequentially developed Parsimonious
Deconvolution. Intuitively he felt that MED is excessively biased toward

the larger events and a method which "sees" more of the data would result

in a better deconvolution. Claerbout proposed minimizing the norm ratio
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Following Claerbout's reasoning, a prototype for Variable Norm Decon-
volution was introduced. It was essentially a generalization of Wiggins'

work. The proposed ratio was
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where the parameter O governs the relative weightings of the reflectivities.
This ratio is believed to be optimum for detecting spiky signals in noise
which is more uniform than Gaussian, the degree of uniformity being control-
led by the size of a. Deeming (27), about the same time, independently
proposed the variable norm and a single algorithm incorporating the above
methods.

Oce and Ulrych (28) proposed maximizing a modified ratio,

Vi(x) = . (6-4)
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They also proposed applying the transformation
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to the estimated reflectivity series where s is a constant in the range
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They reported improved results and faster convergence relative to MED.
This is possibly because the transformation changes the distribution of
the reflectivity series and noise towards uniformity, the region in which

V' is optimal.

B. Multichannel Variable Norm Ratio

Variable norm deconvolution is based on maximizing the multichannel

function,
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This function has several important advantages over the previously proposed
measures:

1. It is the geometric mean of the statistic across channels. 1In
testing those ratios which use the arithmetic average it was found that a
single spiky channel could dominate the solution as it is given the greatest
weight. Often a single channel would be spiked by the inverse filter and
the other channels trashed. Using the geometric mean is later shown to
weight channels inversely to their spikiness. This does not allow a spiky
channel to dominate the solution but may allow noisy channels to slow
convergence. Essentially using the geometric mean improves robustness.

A common situation in seismic processing is a data set having a single
channel with a huge spike caused by incorrectly reading from magnetic tape.
The geometric mean of the statistic over channels would automatically

assign the channel zero weight in the estimation of the inverse filter.
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2. It is invariant to varying gain levels on different channels.
Those proposed by Claerbout and Ooe are not scale invariant. They are
essentially single channel measure whereas the varimax norm and U(X,ul,uz)
are multichannel measures. This property also improves robustness because
the scale of typical seismic data can vary greatly across channels and is
difficult to remove.

3. It allows the number of samples per channel to vary. In the
above expression the number of samples, n, could be subscripted by the
channel index, j. This is useful because a spatially varying window may
be used to edit out noisy portions of the section being deconvolved. The
other norms are not given in terms of the length of the channels. They
must assume all channels are of equal length.

4. It allows the norm ratio used on each channel to be determined
by that channel's statistics. The shape parameter for each channel can
be estimated by generalized kurtosis. This parameter can then be used to
determine the corresponding statistic to be maximized. Although the
proposed objective function is written in terms of fixed al and az, they
could be subscripted by the channel index j.

5. It allows the norm ratio to change as the iteration proceeds on
each channel. The objective function could be written with o, and uz
subscripted by the channel index and superscripted by the iteration number.
This greatly improves robustness as the distribution of the estimated
reflectivity series changes both across channels and as the iteration
proceeds.

6. The proposed norm ratio is derived from a statistical basis. It

is the geometric mean over channels of a scale invariant test statistic for
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the hypothesis that a random sample is described by the shape parameter
az and not ul. This enables a greater understanding of what the derived
deconvolution method is doing to the data. It also allows one to visualize
the inverse filter as one which changes the distribution of the inputs in
a known way.

Six advantages of the proposed objective function have been noted
above. Now some possible disadvantages are noted.

1. 1In the next two chapters, methods for determining an inverse filter
are derived. They iteratively estimate a reflectivity series (or inverse
filter) such that the function U(X,d ,az) is maximized where al > .. The

1 2

estimate which maximizes U(X,ul,a2) may not have the distribution uz. It

is an estimate which is "furthest" from 0y in the "direction" o, - This is
a mixed blessing.

It causes problems because the estimated inverse filter sometimes
collapses several real events into one by trying to drive the distribution
of the reflectivity series past az. This problem is partially remedied
by requiring the reflectivity series on different channels to be independent.
For deconvolving common shot gathers this independence is satisfied by
differential moveout. In structurally complex areas the seismograms also
have the independence property. For a parallel layered earth, the seismo-
grams are not independent across channels and the algorithms will try to
combine all events within a time interval equal to the filter length.

Trying to drive the shape parameter as small as possible is a good
property because the shape parameter describing the outputs is rarely
L]

known. BAbout all we can say for sure is that it is smaller than that

estimated for the inputs to the process.
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2. The proposed ratio has a lot of parameters relative to the others
mentioned above. This abundance allows flexibility and is believed to
improve robustness. On the negative side, it complicates understanding
and may prove difficult for others to use. The more parameters a process
has, the greater the possibility for incorrectly choosing one of the para-
meters.

3. A problem, which will become evident when the gradient for the
Newton-type algorithm is derived, is the requirement of a threshold para-
meter to prevent division by zero. This occurs when either al or a2 is
less than 1. We have studied the choice of this parameter and have not

yet found a robust criterion for estimating it. This subject is covered

again in the chapter on implementation details.

C. Choice of Objective Function
Here several possibilities for choice of the shape parameters are
presented. They are broken down into two classifications with three
categories each.
1. Variable methods
The coefficients al and uz are adjustable to characterize the
data being deconvolved. Ideally the setting of these parameters can
be made at each iteration by the program, after analyzing the distri-
bution of the currently estimated reflectivity series on each channel.
Three philosophies govern this approach. If § is the estimated
distribution of the current reflectivity series, the first tries to

. push 8 away from the Gaussian by maximizing U(X,2,8). The second

tries to push 8 towards the certain event by maximizing lim U(X,8,€).
>0
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The third is similar to Claerbout's Parsimonious Deconvolution. It

is most unbiased because it increases U by maximizing U(X,8,8-c) where
€ is a small constant.

2. Fixed methods

There are three categories of fixed norm methods. The first
maximizes U(X,ul,2) where al > 2. This method estimates the reflecti-
vity series by pushing up the larger events. It is believed optimum
for a seismogram with convolutional noise described by 0y and is
attractive because the Wiggins-type algorithm can be used. It generally
converges in fewer iterations than any of the other methods but has a
tendency to combine larxrge events.

The second category maximizes U(X,2,1). This is believed to be
closer to the optimum for seismic data because it tries to drive the
seismogram's distribution away from the Gaussian toward the double
exponential. Generally, it is more robust than the first.

A third category tries to drive the distribution towards the
certain event from the Gaussian by maximizing %ig U(X,2,g). Claerbout
derived an equivalent function from the geometric inequality which he
called Bit Count Deconvolution. The function is a measure of the
dissimilarity of the X;s. It is appealing because the convolutional

noise is represented by the Gaussian and the spikiest possible decon-

volution by €.

D. Asymptotic Properties
We define a Bussgang process as any zero mean random process which

t

has the following property,
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where z(*) represents the output of an arbitrary memoryless non-linearity
such as a cuber.

The property is essentially that the crosscorrelation between the
inputs to a non-linearity and its outputs have the same shape as the auto-
correlation of the inputs.

A number of random processes belong in this class. Bussgang (29)
observed that any correlated Gaussian process has this property. Barrett
and Lampard (30) extended Bussgang's result to all processes with expo-
nentially decaying autocorrelation functions. This includes any independent
process as its autocorrelation function is an infinitely fast decaying
exponential -- a delta function. Other members of this class are Markov
chains with arbitrary probability distributions. This type of process is
commonly used to model stratigraphic sequences (10) and impedance logs.

It is simple to extend the class to include those obtained by differentiating
these processes. This is a very significant result because the reflectivity
series can be modeled as the differential of an impedance log.

Here we show asymptotically that inputs described by a Bussgang process
are not modified by the algorithm. Using expectations the norm ratio for

an infinitely long channel is

1
L mrlx]%y
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0(X,0 ,u2) =1 (6-9)

1

Optimization methods presented in the following chapters differentiate the

norm ratio with respect to each coefficient of the inverse filter; the
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resulting gradient is written

90 _ Elz) (Xg)xe4r] _ Elzp (Xp) Xet1]

= 6-10
of ¢ Elzy (x¢) x¢]) Elz, (x¢) xt] ( )
where zl(xt) represents the antisymmetric memoryless nonlinearity
og-1
[xtl L7% sgn(xg) . (6-11)

Using the property of the Bussgang process the gradient is identically
zero. This proves asymptotically that the algorithms converge when the
estimated reflectivity series has this property. It also indicates the
parameters al and az are arbitrary positive constants (for infinitely long
inputs). This corollary is supported by empirical results which indicate

for reasonably varying o, and o

1 5 that the resulting deconvolutions are

practically the same when the sample size is large.



