Chapter 4
3-D DOUBLE SQUARE ROOT EQUATION
AND RELATED OPERATORS

It is a simple matter to extend the theory of the 2-D double square
root equation to 3-D recording geometry. One can also easily develop
the separable approximation (Sep) to this new DSR operator. We will see
that deviation terms (Dev) present strong coupling of the two horizontal
axes. Since true dips can only be properly recorded by the 3-D geometry,

the Dev operator becomes more realistic in the case of 3-B than of 2-D.

4-1 3-D Development

We start with the scalar wave equation in 3-D Cartesian coordinates

(xl.xZ.Z):

1
+ + -5 =5 |r-=0 (4-1)

As in the 2-D case, we assume no lateral velocity variation and

transform the wavefield over ( xl,xz.t ):

ik %, + ik x. - et
x1 1 x2 2
P(kxl,kxz,z.w) = JUU'P(xl,xz,z,t) e dx, dx, dt

(4-2a)
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and inversely

- { ik x, + ik x, - jwt )
x1 1 x2 2
P(x.,x,,2,t) = SIS P(k_ ,k_  ,z,0) e dk_ dk
1’72 X X x X
1 2 1 2
(4-2b)
Applying the differential operator (4-1) on (4-2b)
2 2
Q_E P(kx ,kx ,Z,w) + 25 - kx z . kx 2 P(kx .kx ,2,0) = 0 (4-3)
9z 1 2 v 1 2 1 2

For simplicity, we further assume a constant velocity medium. Then, the

upcoming wave solution to (4-3) is

ik _z
P(k, .k, ,z,@) = P(k_ ,k_ ,0,0) & ° (4-4)
) X1 %
where
1/2
v kx 2 v kx 2

ko=-201- = - 2 (4-5)
r4 v w w

If we now imagine a 2-D array of receivers, each with a unigue
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Jocation { 9,.9, Y} ., spread over the plane { x_..x., ) , then (4-4) can be

1'72
used to downward continue these receivers. Similarly, we may consider a

2-D array of shots over the ( x WXy Y-plane, each with a unique loca-

1

tion sl,s . Then, (4-4) can also be used to downward continue these

)
2
shots. The total phase shift can be determined by expressing {(4-5) once
for receivers and once for shots, and adding the two expressions

together. The 3-D counterpart of (1-15) becomes

DSR(G,S) = [ 1 - [ Gf + Gg J ]1/2 + [ 1 - [ Sf + S: ] ]1/2 (4-6)

where
k
G g
[ 1] LA (4-7a,b)
GZ w |k
9;
and
k
S s
1 v 1
[S ] =5 | {4-8a,b)
2 52

are normalized shot and receiver wavenumbers. Equation (4-6) is the dou-
ble square root operator in 3-D recording geometry. Again, for simpli-

city, we omit the scaling wavenumber o / v .



4-2 Midpoint-0ffset Coordinates

We now make a coordinate
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transformation

space to ( yl,yz,hl,hz,z,t )~space, where

—

from

( $1+55:97:05,2,t )-

(4-9a,b)

(4-10a,b)

( Y0¥, )y are midpoint coordinates and ( h1'h2 ) are (half-)offsets in

inline ( Xy Yy and crossline ( X, }y directions, respectively. Using the

principle of invariance of wavefields under coordinate transformation

P(51'52'91’92’

2,t) = P'(yl.yz.hl.hz.Z.t)

we can compute the midpoint-offset wavenumbers by

rule for partial differentiation to (4-11):

ap _ By , o oh,
asl ayl asl 6h1 asl
o _ort Y2 g My
852 8y2 652 ah2 852

(4-11)

applying the chain

(4-12a)

(4-12b)



and
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op _ ap 9y, L ah,
agl ayl agl ah1 agl
o _op Y2 apr My
6g2 6y2 8g2 ah2 6g2

Using (4-9) and (4-10) we simplify (4-12) and (4-13)

P 1
asl 2
o 1
852 2
and
o 1
agl 2
o 1
892 2

Fourier transforming both sides

|

|
|

of

! get
ayl ah1
TN )
ayz ah2
ayl 6h1
!  apt
ayz ah2

{(4-14) and (4-15)

{4-13a)

(4-13b)

(4-14a)

(4-14b)

(4-15a)

(4-15b)

canceling
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P=P' , ‘we obtain the midpoint-offset wavenumbers in terms of shot-

receiver wavenumbers :

k k- k
s, 1 ¥y h
k 2 |k - ky
52 Y2

and

k k + k
91 1[N h
k T2 k4 kh
95 Y2

We normalize both sides of (4-16) and (4-17)

and

where

(4-16a,b)

(4-17a.b)

(4-18a,b)

(4-19a,b)

(4-20a,b)
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and
k
H h
1 v 1
[H ] * %e Kk {4-21a.b)

Substituting (4-18) and (4-19) into (4-6), we obtain the 3-D double

square root operator in midpoint-offset coordinates:

1/2
DSR=[1-[Y1+H1]2—[Y2+H2]2] (4-22)

4-3 The Separable Approximation
We may extend the 2-D definition of the Sep operator given by (1-39)

to three-dimensional earth and obtain

Equation (4-23) describes conventional processing in 3-D. The term
involving H corresponds to the NMO-1ike operation in 3-D, and the term
involving Y describes the migration of a 3-D wavefield recorded =zero

offset. Notice that in (4-23) Y and H are separable, which implies that,
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under the separable approximation, the NMO+stack and wmigration 1in 3-D
can be cascaded as in 2-D. However, each operator by itself requires
that all the 3-D data be handled. It is only when we make approximations
that we can split each operator into two parts involving inline and
crossline directions independent of each other. In fact, today’'s 3-D
zero-offset migration utilizes the 15-degree approximation to the migra-
tion operator of (4-23), which then allows the treating of inline and

crossline zero-offset sections individually.

4-4 The Deviation Operator

Again, we may utilize the formal definition of the deviation operator
as the difference between the DSR and Sep operators. Using (4-22) and
(4-23),

1/2
2 ] (4-24)

-— - 2—
Dev = [ 1 [ Y1 + Hl } [ Yz + H2 ]

e pemy ey ]

2 2 172 2 2 1/2
cafi- (B ) e [ [(Rei) ]2

Here, as in the case of 2-D, we would like to have estimates for H1 and

H2 in terms of traveltime and surface offsets (hl’hz)' We are also
interested in approximating (4-24) to second order in Y as we did in
Chapter 1. Using the second order square root expansion provided 1in
Appendix A (Equation A-5), the DSR given by (4-22) takes the form
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DSR

H
—
-

)
—~
=X
- N
+
=

2 2y% 2 2. %
where 1 > (H1 + Hz) >> (Y1 + Y2) .
Using the second order square root expansion given by (A-1), (4-23)

takes the form

Ignoring terms higher than second order in Y we have

(4-26)

G2 L2 w2 L a2 T2
Sep = { Yl + Y2 ) + 2 [ 1 { H1 + H2 ) ]

If we think of Y

(Yf + Yg)i/2 and H = (Hf + Hg)% as being the sine of
offset and dip angles respectively, then (4-25) and (4-26) are 15-
degree-type approximations in Y, but are of a higher degree in H. Taking
the difference between (4-25) and (4-26) we obtain the approximate form
of the deviation operator. Simplifying and rearranging this difference,

we have the final expression
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1 - H: ) 1 - Hf )
Dev = 1 - Y1 + 1 - Y2
22 1372 22 1372
[ - (He e nd) ] [ 1- (v wly ]
2 H H
1 1y
- Y, Y, (4-27)

It turns out that all three terms in (4-27) are of the same order of
magnitude. Perhaps, this will become more obvious when we make a second

order expansion in H. Our final expression is
1 2 2 2 1 2 2 2
7 [ 3 H1 + H2 ] Y1 - E-[ H1 + 3 H2 ] Y2-2 H1 H2 Y1 Y2(4-28)

Each term contains HZYZ—— like products. Notice the strong coupling
between the wavenumbers, even 1n the crude approximation (4-28).

Today’s 3-D processing simply assumes H2 = 0 . For this special case
(4-27) becomes

Dev = [ 1 - [ 1 - K ]'3/2 ] vé . [ 1 - [ 1 - W ]'1/2 } Y2 (4-29)

and (4-28) becomes

y2 - % e v (4-30)
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Equations {4-29) and (4-30) imply that, under the assumption of 2-D NMO
correction H2 =0 ), the 3-D deviation operator becomes separable in
terms of inline and crossline terms. However, in case of true 3-D data
processing ( H2 #0 ), we are bound to deal with deviation operators
given by {(4-27) and (4-28) which are not decoupled in terms of inline
and crossline terms. Perhaps the only way out is treat one of the dip

operators ( Y .Y2 ) as scalar.

1

4-5 The Crooked Line Recording Geometry

What we would really like to derive are operators which can be
implemented such that inline and crossline data can be treated indepen-
dently. There may be several ways of specializing the full 3-D double
square root operator (4-22) to simpler forms. Here is an example.

We consider a shooting pattern with shot points following a zig-zag

pattern 1in the direction of the receiver axis. We treat G1 and S1 as

operators. We also assume H2 = 0 . Further, we might make Y2 a scalar

function of y2 . For instance, Y2 = constant implies uniform cross-dip.

With this assumption, (4-22) takes the form

L
Factoring the scalar (1 - Yg)z ,

1/2 1/2
2 2
Y, + H Y, - H
SR = (1-y2)yM2q b L b 1 P (O A S
2 1 - YZ 1 - Yz
2 2

(4-31)

A d
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N
Notice that (1 - Yg)2 = cos (cross-dip) . Equation (4-31) implies that,
for the crooked 11ine geometry, we may consider the 2-D double square
root operator corrected for cross-dip if we treat szas a scalar and set
H2 =0
The Sep and Dev operators for the crooked line geometry are derived

below. Setting H2 = 0 1in (4-23) we get

Sep = 2 [ (1 - Y: ) - Yf ]1/2 .2 [ 1 - Hf ]1/2 -2

2)%

Factoring the scalar (1 - Y2

172

Sep =2 (1 - Y2 )1/2

+2 [ 1 - K2 ]1/2

1 -2 (4-32)

Now let us derive the deviation operator. Using the second order square
root expansion developed in Appendix A (Equation A-4), (4-31) takes the

form

) 2,172 1 L2 2 172
OSR = (1-Y2) =75 [ 1-v2 - w2 ]
(l-Yz)
(1-v2)y?
) . 20 Y
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Simplifying,

HZ 1/2
DSR = 2 ( 1 - Yg A B G— > (4-33)
1 -Y
2
H2 -3/2
(1 - Y2 )-1/2 1 - 1 Y2
2 1 - y2 1
2
We expand (4-32) up to second order in Y1
Y2
Sep=2(1—Y§)1/2 1--———1———2—— +2[1-Hf]1/2-2
2 (1 - Y2 )

Simpl1ifying,

Taking the difference- between (4-33) and (4-34) and canceling the

scalar-1ike terms, we have the final expression

-3/2

Bev = | 1 - 1 - (4-35)
1 -Y (1 -Y )1/2

~N
N N=- N
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(4-32) and (4-35), although derived for a particular 3-D geometry (the
crooked Tine), essentially describe 2-D Sep and Dev operators corrected
for cross-dip. This becomes obvious when (4-32) and (4-35) are compared
with {1-40) and (2-5), respectively.

As a final note, it is important to emphasize the fact that 3-D
theory is wide open to research. Here, we developed the basic theory for
the 3-D double square root equation. We also introduced a challenging
problem: 3-D recording geometry that can be most easily handled with
equations that are yet to spring from the 3-D DSR equation.



