Chapter 3
LATERAL VELOCITY VARIATION

Lateral variation in velocity is of great concern 1in areas with
complex structural settings or rapid facies changes. With this motiva-
tion, we would 1ike to extend the theory developed in Chapter 1 to
incorporate lateral velocity variation. In particular, we will study the

Sep(Y,H) operator and investigate terms that may be of significance.

3-1 The Double Square Root Equation

We will restrict ourselves to the case in which velocity does not
vary within a cable length of shots and receivers. This will allow us to
use (1-7) to extrapolate wavefields 1in media with lateral velocity vari-
ations. It will be convenient to express the associated vertical

wavenumber kz of (1-6) as
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(3-1)

.
NIX N

<
€

Writing (3-1) once for receivers and once for shots, then summing, gives

2 172 2 172 _
1 ks 1 t&
kZ = - w > + ) (3-2)
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Using (1-28) we put (3-2) into midpoint-offset space

For brevity, we will leave the variables s and g in the velocity func-

tion. For convenience, we will redefine the normalized wavenumbers

[;] - E% [:V] (3-4a,b)

We will make the following further definitions:

M(s) = —t - (3-5a)
v(is)
and
M(g) = — (3-5b)
v(g)

where M 1s the square of the slowness function.

Upon substitution of (3-4) and (3-5), (3-3) takes the form
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k=~ w {[ M(s) - ( Y - H)Z ]1/2 . [ M(g) - ( ¥ + H)Z ]} (3-6)

Omitting the scaling frequency w , we define the double square root

operator in laterally varying media as

DSR(Y,H) = [ M(s) - (Y - H )2 ]1/2 + [ M(g) - ( ¥ + H )2]1/2 (3-7)

3-2 The Separable Approximation

We defined the improved conventional processing by the NewSep{Y,H)
operator. Let wus derijve this operator using the newly defined DSR(Y,H)

given by (3-7). We will make use of the shortcut derivation (2-20):

A A A
NewSep(Y.H;H0=H.Y0=0) = DSR(Y,H) + DSR(O,H) - DSR(O,H)

Making all the relevant substitutions

NewSep = [ M(s) - (Y - H )2 ]1/2 . [ M(g) - (Y + H )2 ]1/2 (3-8)
. { M(s) - K2 ]1/2 . [ M(g) - H2 ]1/2

) [ M(s) - b2 ]1/2 i [ M(g) - B2 ]1/2
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The third and fourth square roots are NMO-1ike terms similar to (1-35) ;
i.e. the stacking operator. Abandoning them we will be left with the
retarded migration part:

Mig = [ M(s) - (Y - f )2 ]1/2 + [ M(g) - (Y + H ) ]1/2 (3-9)

i { M(s) - B2 ]1/2 i [ M(g) - i2 ]1/2

Referring to the second order square root expansion provided in Appendix

A (Eguation A-3), we have

[ M(s) - (Y - A )2 ]1/2 - [ M(s) - H2 ]1/2 (3-10a)
] H oy ) M(s) ¥
M(s) - B2, [ Mesy - W2 ]2

and
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[M(g) NETE B ]1/2 - [M(g) - K ]1/2 (3-10b)
A 2
;. —HY M(g) ¥
I\Z A
M(g) - H® [M(g) _n2 ]z
For simplicity, define
c(s) = [M(s) - he ]1/2 (3-11a)
A
o) = [ Mg - 2 ]1/2 (3-11b)
Substituting (3-10) 1nto (3-9) together with the definitions (3-11) we

have

_ M(s) Y2 ]

2 ¢(s)?

Mig ~ C(s) [ 1+ HY2
C{s)

+ C{g) [ 1 - H Y2
c(g)

- C(s) - ¢(qg)

Mg ¥ ]

2 c(g)?
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Simplifying, we get the final expression

2
(0~ R S W T R A M(s) M(g) )
Mig ~ H Y [c(s) T} ] > [———c(s)3 + c(g)3 ] (3-12)

The second term on the right is a typical 15-degree-1ike migration equa-
tion which 1s adjusted for offset via (3-11). But the first term is

entirely a stranger to us:

NewMig = [ LS . ] H oy (3-13)
R R E I T))
Substituting (3-4a) and (3-11) we have
kz = - w NewMig
k
- - 1 - 1 - A -
kz = - w H 5 (3-14)

Notice that the new definitions of Y and H (3-4) are the ol1d Y and H

A A
(1-30) divided by v. We may also define the new H as the old H (2-13)
divided by v; thus
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N
Using the new definition for H and assuming it is small

[M(s) . ne ]1/2 - [M(s) ]1/2 o1

M(g) - B2 1)2: Mgy 1172 - L
[ o) ]

(3-14) becomes

k
2 h y
k, = - vis) - v{g) [——]
z @ [ ] [vz t] 2 w

hv(s) - vig)

k. = -
z t v2 y
which transforms to
. . hv(s) - v(g) 1
PZ = N vz Py {3-15)

where v is considered to be the average of v(s) and v{g). This equation
implies a pure lateral shift. Notice the coefficient 1is strongly depen-
dent upon the offset value and the lateral velocity gradient. For zero
offset this equation means no operation. However, in a laterally varying

medium, the thin lens term of the migration process still needs +to be
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applied even to zero offset. If we imagine a point scatterer in a
medium with lateral velocity , Equation (3-14) implies the following: If
the top of the diffraction hyperbola on a common offset section ( h1 )
is located under midpoint ( Y, ) , then on a common offset section
{ h2 ) the +top will be located under a different midpoint ( h2 ) .The
lateral shift ( Yo - Y ) will depend upon how strong the lateral velo-
city gradient is and how far apart the two offsets are ( h2 - h1 )

Let us investigate the significance of (3-15). During the process-

ing of the field dataset described in Section 2-4, it was observed that
some of the dipping events showed evidence that some lateral phase shift
from one common offset to another was still present after moveout
correction and partial migration. An example is shown in Figure 3-1. One
possible explanation 1s that there may be lateral variation in velocity
due to overpressurized shale (Claerbout, personal comm.) ar prominent

structural complexity.

First let us transform (3-15) to NMO coordinates. The transforma-

tion defined by (2-27) will simply change the coefficient of (3-15):

-1/2
I _2 hj2 v(s) - v(g) }
P, = - 1 [1+ [Vt,] ] 2 Py (3-16)
We let
C = h vis) - v{g) (3-17)

1/2 2
2 h)2 v
t-[u[”,]]

Earlier in the derivation of (3-15) we made a small-offset approxima-
tion. Similarly, (3-17) becomes
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h 1 2 h2 v(s) - v(g)
c=——.-[1—§[vt.]] 2 (3-18)

v

For the sake of a crude estimation, 1let us consider a constant
lateral velocity gradient. This will allow us to write an analytical
solution to (3-16). Using (3-17) we have

P =-CP (3-19)
Fourier transforming in t and y , P = P(ky.z.u) , we obtain
P =-1Ck P (3-20)
Z y

The solution to (3-20) is

-1 C k 2z
Pk .2.@) = P(k,.0.0) e Y (3-21)

Given the phase shift & = C ky 2 , we can estimate the lateral velocity

gradient. Solving for wv(s)-v(g) in  (3-18) and substituting

ky = (g) sin{#) and 2z = vt'/2, we obtain

v(s) - v(g) = Av = (3-22)
h [ 1 -
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where # can be regarded as the average dip over the distance s-g.

Let us plug some numbers into the expression (3-22). Referring to

Figure 3-1, between midpoints 100-150, we have

®$ = ¢ radians

h = 5200 ft

t!' = 2.5 sec

v(t') = 7500 ft/sec

o ~ 15

w~ 2% x (25 Hz)

The resulting value for Av is approximately 500 ft/sec per 1000 ft of
lateral distance. Even this crude estimate gives an idea as to the sig-
nificance of (3-15). A closer study of this term may lead to a procedure
by which one can accurately estimate lateral variation in velocity. In

particular, the statics problem can now be reconsidered to take offset

dependency into account.
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FIG. 3-1. Portions of the two moveout-corrected and partially migrat-
ed common offset sections from the Gulf data. The event marked is locat-
d differently in the two sections, possibly due to lateral variation in

elocity.



