Chapter 1
THE DOUBLE SQUARE ROOT EQUATION
AND RELATED OPERATORS

It is essential to the central topic of this thesis to develop the
theory for the double square root equation. This equation describes
downward continuation of both shots and receivers into the earth; thus
it is of fundamental importance to seismic imaging. It is exact in the
sense that it can handle all ranges of dip and offset angles. If we
neglect the velocity gradient dv(z)/dz, the double square root equation
is also exact for stratified earth and can be extended, with some cau-
tion, to treat lateral velocity variation, as will be shown in Chapter
3.

In this chapter, we will develop the basic 2-D theory for the dou-
ble square root equation. This will allow a rigorous analysis of conven-
tional seismic data processing. We will discover that conventional
implementation of the double square root equation requires us to make

zero-dip and zero-offset assumptions.

1-1 The Double Square Root Equation

We start with the scalar wave equation, which describes the propa-
gation of the compressional wavefield P(x,z,t) in a medium with velocity

v(x.z) and constant material density
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Given the upcoming seismic wavefield P(x,0,t) recorded at the surface,
we would 1like to determine the reflectivity P(x,z,0). This requires
extrapolating the surface wavefield down to depth z and collecting it at
t =0

It is to our advantage to decompose the wavefield into mono-
chromatic ptane waves with different angles of propagation from the
vertical. Therefore, we would 11ke to work in the Fourier domain when-
ever possible. We may Fourier transform the wavefield over time t. If we
assume no lateral velocity variation, we may also Fourier transform over

the horizontal axis x. Thus we have

1k x - 1wt
P(k .z.w) = SIS P(x.z.t)e x dx dt (1-2a)

and inversely,

~(ik x - iwt)
P(x.2,t) = ST P(k ,2,0) ¢ X dk  do ~ (1-2b)

Applying the differential operator of (1-1) onto (1-2b), we get

62 “2 2
—5 Plk.z.w) + |55 - k | P(k .z.0) =0 (1-3)
0z Y

For simplicity, let us further assume the constant velocity case.

We will 1ook into the case of stratified earth later in the section. The



upcoming wave solution to (1-3) can be immediately recognized as

2
w 2
1 [vz kx] 2
P(kx.Z.w) = P(kx.o.w) e

which i1s also the solution te the sne-way wave equation

2 1/2
d R [
FrY P(kx.z.u) = 1[v2 kx] P(kx.z,m)

as may be readily verified by substituting (1-4) into

define the vertical wavenumber as

With this, Equation (1-4) takes the simple form

1kzz
P(kx,z,w) = P(kx.O,w) e

(1-5).

(1-4)

(1-5)

Let

us

(1-6)

(1-7)



This equation has the physical 1implication that we seek : Given the
wavefield recorded at the surface P(x,0,t), we may double Fourier
transform over (x,t) and get P(kx.O.u) . Next, we simply multiply by
the all-pass filter exp (1kzz) to obtain the wavefield P(kx.z.u) at
depth z. Subsequent inverse Fourier transformation over (kx.w) yields
P(x,z,t) from which we obtain the earth image P(x,z,0). 1In practice,
however, mapping is done in the transform domain directly from (kx,w) to
(kx'kz) using (1-6) [Stolt, (1978)7.

Our main objective here is to interpret (1-7) as a tool for down-
ward extrapolating wavefields given at the surface. The first-year stu-
dent of reflection seismology usually has difficulty in relating the
simple mathematical development of the process presented above to its
physics. Here is another, yet simpler derivation of Equation (1-7). We
are given the upcoming wavefield recorded at the surface P{x.0,t). Let
us decompose this wavefield into monochromatic plane waves, each travel-
ing at a different angle from the vertical. Hence, we identify these
plane waves by attaching them to a unique (m.kx) pair of numbers. What
we Just did was Fourier transform the wavefield which is P(kx.O.w) .
Let us now consider one of these plane waves as depicted in Figure 1-1.
Imagine that this plane wave passed a point P at t = 0 , traveled
upward, and was recorded by a receiver at the surface point A at time t.
We would 1ike to take the waveform at point A sitting on the wavefront
at time t back to where 1t actually was; i1.e. the reflection point P. It
seems sensible to travel back using the same ray path. This means that
downward continuation does not change the horizontal wavenumber kx
Let us move the wavefront such that the waveform at A is now at A' at
depth Az . If we actually had a buried receiver at A' , 1t would have
recorded our plane wave at t - At , where At is the traveltime between
A - A" . In other words, going down Az , we changed the traveltime by

-At . From the geometry of Figure 1-1, we have

At = % cos(8) Az {1-8)
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FIG. 1-1. On extrapolating wavefields.
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where v/cos(#) 1s known as the vertical phase velocity. What we know
about the plane wave 1is its kx and w . Suppose the distance between
A - A' is X wavelength. At time (t - At) , the wavefront intersects the
x-axis at a distance of Ax from A. Referring to the geometric relation
in Figure 1-1

A
o sin(@) {(1-9a)
X

Thus, using the definitions A = 2¢/(w/v) and Xx = Zr/kx . we obtain

v k
sin(#) = —= (1-3b)
and
172
vkx 2
cos(®) = 1 - - (1-9¢)

where @ / v 1s the wavenumber along the ray path. Substituttng (1-9c¢)
into (1-8) we have

2
1 vk,
at = - | 1- =2 Az (1-10a)
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As we move down we do not want to change the wave amplitude. Given the
change in traveltime -At by (1-10a). the corresponding phase shift will
simply be -wAt . At each Az -step of descent, we may assign a different
velocity v(z) to the waveform. This suggests that we change the angle
(#) from the vertical as we continue our journey along the ray path down
to the destination point P. The total phase shift to which the waveform
has been subject when we arrive at P is -Jwdt . In Fourier domain, all

we have to do 1s multiply the transformed surface wavefield P(kx,D,a) by

@ = e {(1-10Db)

which is exactly what Equation {1-7) implies, except that (1-7) was

derived for constant v.

How do we know that we reached our destination point P and did not
pass beyond it? Seismic imaging s not completed unless we impose a
stopping condition onto downward continuation. Here, we simply terminate
the process when our clock, which measures t - J At , reads zero travel-
time. Notice that the normalized wavenumber X = vkx/w is the sine of the
angle of arrival to the receiver at A [ Equation (1-9b) ]. In fact, we
will define extrapolation operators 1in the simple form 1nvolving only
the cosine-11ke term Op(X) = (1 = )(2)1,z R in  which case
k. = - {(w/v) Op(X) . This completes our discussion of the fundamentals

2
of seismic imaging.

Let us utilize these concepts to downward continue a complete
seismic experiment with many shots and receivers. We would 1ike to down-
ward continue both shots and receivers. First, consider a continuous
stretch of receivers, each with a unique location g, along the x-axis.
Then, we can use {1-7) together with (1-8), by replacing x with g. to

downward continue these receivers. We use the reciprocity principle and



interchange shots and receivers. We then proceed similarly on a continu-
ous stretch of shots, each with a unique location s, along the x-axis.

In shot-receiver space (1-7) will read as

1kzz
P(kg ks.z,w) = P(kg.ks,o,w) e

»

(1-11)

When all shots and receivers are at depth JSdz , the wavefield has
undergone a total phase shift of -w J'(dtg + dts) . The vertical

wavenumber then becomes

2 2
vk vk
kK =-2 1 - {.ﬁq + 1 - {.ﬁ} {(1-12)
z v w @

For convenience, we define the normalized shot and receiver wavenumbers

as

-2

causing (1-12) to take the simple form



[ ]
k, = - ;—DSR(G.S) {1-14)

where

DSR(G,5) = ( 1 - 62 )12 4 (1 - 5% )1/? (1-15)
Upon substituting (1-14) 1into (1-11) we have
-1 £ pSR(G,S) z
Plky kgoz.m) = P(k .k .0.0) e v (1-186)
which is the solution to the double square root equation
& Pk, .kg.z.a) = - 15 DSR(G.S) P(kgekgezw) (1-17)

Equation (1-16) describes downward <continuation of both shots and
receivers into the earth. We will refer to (1-15) as the double sguare
root operator (DSR). For simplicity, we leave out the scaling wavenumber

w / v from the definition of DS3R.

Let us now turn our attention to the case of a stratified earth.
Since we have not Fourier transformed P over z, the one-way wave equa-

tion {(1-5) is also valid for v(z)
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1/2
d . wz 2
E;~P(kx.z.u) = -1 5 " kx P(kx.z.u) {(1-18)
v(z)
in which case (1-6) becomes
1/2
" v(z)kx 2
kz(z) = - V(2 1 - = {1-19)
(1-18) has the following solution
1J§k (z) d2z
P(k .z.w) = P(k .0.0) e z (1-20)

which immediately verifies (1-18) when substituted. -‘However, in order
for this to be a proper wave solution, we also would like it to satisfy

the two-way scalar wave equation (1-3). From (1-18)

2 dk_{2)
d P - dv{z) i 4P
Z2 P = ov(z) dz P+ i kz(z) dz

d

where P = P(kx.z.u) . Substituting (1-18) for dP/dz
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2 dkz(z) dv(z)
dv(z) dz

=
]
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If we 1gnore the velocity gradient dv(z)/dz, the final expression is

2

Sopsil(z)p=o
P4

dz

Substituting (1-19) into this expression, we have

2 2
9—-2—P+[“' -kz]P=D (1-21)

which 1s t1dentical to the scalar wave equation (1-3). Consequently, the
double square root equation can be extended to the case of the strati-
fied earth model if we neglect the vertical gradient of material wvelo-
city. This is in reality a less severe assumption to make than restrict-
ing the analysis to stratified earth, i.e. ignoring any lateral varia-

tion in velocity. The double square root equation (1-17) now becomes

IQ.

w
P = -1 viz) DSRLG(z),S(z)] P (1-22)

[« %
N

where



k
G(2) _v(2) q )
[5(2)] T ow {k ] (1-23a,b)

An attempt will be made in Chapter 3 to further extend the theory to the

case of lateral variation in velocity.

The double square root operator (DSR) given by (1-15) is separable
in terms of shot and receiver wavenumbers. This means that one can
first organize the wavefield recorded at the surface 1into common
receiver gathers and use the first part of the DSR operator to downward
continue the receivers to depth z. Following this, one can reorganize
the already downward-continued wavefield into common shot gathers and
use the second part of DSR to downward continue the shots to depth =z.
Alternating between common receiver and common shot gathers, the entire
seismic wavefield can be downward continued until imaging is accom-
plished. Although no approximation, apart from the stratified earth
assumption, is made 1n this process, 1t 1s clear that, computationally,
this approach can be exhausting. In fact, today's seismic data process~
ing is essentially done in the space of midpoint y and (half-)offset h
rather than in shot-receiver (s,g)-space. We therefore would like to
put DSR defined by (1-15) into (y,h)-coordinates. This requires the fol-

lowing coordinate transformation:

-2

The principal of invariance states that wavefields do not change under a

coordinate transformation; thus

P(s,g.,z.,t) = P'(y.h,z,t) (1-25)
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where z and t are invariant under the coordinate transformation.

Applying the chain rule to (1-25),

OP _QP' @y . BP' Bh

ds 3y @3s * 3h Bs (1-262)
and

op _dp' dy dpP' 3h )

3 - 3y B8 ' 3h 39 (1-26b)

Using {1-24), we simplify these differentials and get

ar 1 [ap' ap!
3 - 2 [ay " 3n ] (1-27a)
and
P 1 [or! !
g-a = 7 [—a—y-—-+ %—:-—] (1-27b)
Fourier transforming both sides of (1-27) and canceling P = P' , we

obtain the midpoint-offset wavenumbers in terms of shot-receiver

wavenumbers:

kg 1 ky + kh
K = E‘ K - k (1-283.b)
s y
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Multiplying by v / w , we normalize both sides and substitute (1-13) to

get

[g] : [: : :] (1-29a,b)
where

m ) EYJ [:ﬂ (1-30a,b)

Final substituttion of (1-29) into (1-15) yields the double square root

operdator in midpoint-offset space:

172

1/2
DSR(Y,H) = [1 - (v + H]Z ] + [1 ; [Y - H]z ] (1-31)

The vertical wavenumber is now re-expressed in terms of normalized

midpoint-offset wavenumbers Y and H

= -9 -
kz = -3 DSR{Y,H) (1-32)

Is (1-31) an improvement over (1-15)? We have lost the property of
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separation in terms of spatial frequencies. Notice the strong coupling
between Y and H. For instance, Taylor expansions of the square roots in
(1-31) will yleld terms containing cross products of the two
wavenumbers. This in turn will require the recorded wavefield, which 1is
now transformed into {y,h,t)-space, +to be handled in its entirety, a
problem we would like to avoid. In the next section, we will discover

that conventional processing has a robust approach to this problem.

1-2 Conventional Processing

So far, we have developed an exact theory, namely the double square
root equation, for the problem of seismic wavefield extrapolation. It
will be beneficial to look into the conventional treatment of this prob-
lem, in order to determine whether these two approaches are completely

alien to one another, or if they are related in some manner.

The conventional processing sequence comprises two major and cru-
cial components. First, the data is organized into common midpoint (CMP)
gathers and NMO correction 1s applied on each gather. The equation used

for moveout correction is

1/2
At =t - t' = ¢! [ 1+ [vztr:]z] -1 (1-33)

where t is the two-way traveltime for a given (half-)offset h, and t' is
the corresponding two-way zero-offset time. Total moveout correction 1s
the difference between t and t' . In this equation, v 1s taken to be the
RMS velocity at t' . Equation {1-33) is based upon the stratified earth
(zero dip) assumption. The process implied by (1-33) simulates mapping

of the CMP gather onto zero offset. Following the NMO correction, traces
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of the CMP gather are stacked. This not only reduces the volume of the

data but also enhances the signal-to-nofse ratio.

The CMP stack is regarded as an upcoming wavefield recorded zero
offset. This allows us to obtain the migrated section by downward extra-
potation. The imaging condition is based on the so-called explosive
reflectors model in that, at t = 0 , the reflectors explode in unison
sending an upcoming wave to the surface. Apart from being recorded on a
one-way time scale, this wavefield is assumed to simulate a wavefield
that would be recorded at zero offset. The equation used for downward
extrapolation 1is the one-way wave equation (1-5). In order to account
for the one-way traveltime of the explosive reflectors wmodel, however,
the velocity used in extrapolation 1is taken as half the medium velocity.

Thus the vertical wavenumber given by (1-6) is re-expressed as

2 172
2 w v ky
I I (1-34)
Since migration is done in midpoint space, we replaced kx with k. Some

of the current techniques of migration based on wave ‘extrapolation util-
ize certain rational approximations to (1-34), and some implement the

exact form in the frequency domain.

By now it is clear that conventional processing has an advantage
over the exact theory represented by the double square root equation in
midpoint-offset space. Unlike the latter, the conventional approach 1is
composed of two separable operators, namely the NMO+stack applied in
offset space and migration applied in midpoint space. However, we should
be reminded that such an advantage 1s based on zero-dip and zero-offset
assumptions. Where do we go from here? On the one hand, we have an
exact theory that can handle all dips and offset angles, but is diffi-

cult to imptement. On the other hand, we have a conventional approach



that has the convenient property of separation, but is based on assump-
tions which can be severe, particularly 1in a region with a complex
structural setting. Should we drop both approaches and seek for another
theory? No, let us find out whether these two approaches are related in
any way. We will go back to the exact theory and make the same two

assumptions which underlie the conventional approach.

The zero-dip assumption implies that the earth model is stratified.
The seismic energy recorded over such an earth would be completely con-
centrated at the zero spatial frequency, in this case ky =0 . This in
turn suggests that we set the normalized wavenumber Y equal to 0 in DSR
defined by (1-31). The resulting operator will be defined as the Stack-

ing (St) operator, where

St(H) =2 (1 - W y/2 o (1-35)

The factor -2 may at first appear to be a post facto addition to St(H).
But, Tet us think what we want to do with this operator. The first part
of St{H) takes each shot-receiver pair on a CMP gather down to a
reflecting point following raypaths with cos(8) = (1 - Hz)i/2 . Next, we
would 1ike to come back up to the surface following a vertical path to
the point halfway between the shot and receiver. This is simply
equivalent to a constant phase shift (time retardation), which accounts
for the factor -2.

As shown in Appendix B (Section B-2), it turns out that the NMO
shift given by (1-33) 1s a stationary phase approximation to (1-35).
What the operator St(H) does 1is condense primary information on a CMP
gather down to zero offset. As far as this operator is concerned, stack-
ing amounts to selecting off the zero offset and abandoning all other

offsets. Therefore, (1-35) is a zero-dip NMO+stack-type operator.

Incorporating the zero-offset (h = D) assumption into the double
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square root operator is relatively more subtle. On a CMP gather, at and
near h = 0, energy is essentially concentrated at zero spatial fre-
quency, 1in this case kh = 0 . In fact, the task that the NMO correction
attempts to accomplish is to push the primary energy on a CMP gather
towards kh =0 . So, setting the normalized offset wavenumber H = 0 1in

(1-31) we define the Explosive Reflectors (ER) migration operator as
ER(Y) = 2 ( 1 - ¥2 )L/2 (1-36)
Setting H = 0 in (1-32) we have the zero-offset vertical wavenumber

k =-5:-2(1-Y2) (1-37)

Substituting the definition for Y = vky / 2 w into (1-37) we obtain

2
2 w Y ky
k = - ~ l - - (1-38)

which is identical to (1-34). Thus, we conclude that the zero-offset
operator ER(Y) derived from the double square root equation is identical
to the migration operator that is based on the explosive reflectors

model of conventional processing.

Let us now define the following operator:
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Sep(Y,H) = DSR(Y.HO) + DSR(YO.H) - DSR(YO.HO) (1-39)

where H0 and Yo are scalars. In order to grasp the nature of the opera-
tor Sep(Y,H), let us consider the simplest case: if H0 = Yo = 0 , using
the definition for DSR given by (1-31), we have

1/2 1/2

sep(Y.H) = 2( 1 - Y2 yW2 4201 - w2172 ., (1-40)

Adding (1-35) and (1-36) and comparing with {1-40) we have

Sep{Y.H) = ER(Y) + St(H) (1-41)

Hence, the operator Sep{(Y,H) defined by (1-41) describes the total down-
ward continuation involved 1in conventional processing. Certainly, when
an imaging condition is imposed on this operator, the scaling wavenumber
w/v is different for the two components, namely St(H) and ER(Y). Notice
that if Y = 0 we have , from (1-40) and (1-31),

Sep(Y=0,H) BSR(Y=0,H) (1-42a)

and if H = 0 we have

Sep(Y,H=0) DSR(Y,H=0) {1-42b)
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However, 1f Y and H are both non-zero, the Sep(Y,H) operator fails to
include terms with cross products of Y and H, which would be present 1in
the Taylor series expansion of DSR(Y,H). It is the absence of such terms
that makes it possible to express Sep{(Y,H) in the separable form {1-40).
The generalized expression (1-39) for Sep(Y,H) allows us to define other
forms of separable approximations to DSR by assigning non-zero values to
H0 and/or to Yo'

In conclusion, we made a rigorous analysis of conventional process-
ing and showed that it can be developed from the theory of the double
square root equation. We discovered that conventional processing simply
utilizes a separable approximation to DSR. The zero-dip and zero-offset
assumptions are the basis for the separability. How severe are these
assumptions? To answer this question, we are motivated to study the

response characteristics of the DSR and Sep operators.

1-3 Response Characteristics of DSR(Y.H) and Sep(Y.H)

Transfer functions and impulse responses of the DSR and Sep opera-

tors are displayed in five different planes, namely
(1) ky vs. w for constant(z,h)
(2) ky vs. z for constant (w,h)
(3) y vs. z for constant {(w,h)
(4) y vs. z for constant(t,h)

(8) y vs. t for constant(z,h)
Many interesting observations can be made on these planes concerning
characteristics of the operators of interest. We consider the following

transfer functions

o
1= DSR(k_,k, ,w}2z
e ¥ y'h (1-43a)
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where
2 172 2 1/2
v ky v kh v ky v kh
DSR(ky,kh.w) z 1 - ot T + 1 - o " 7 m
{(1-43b)
and
w
1;,— Sep(ky.kh.w)z
e {1-44a)
where
2 1/2 2 1/2
v ky v kh
Sep(ky,kh,u) = 2 1 - 7 + 2 1 - 7 e (1-44b)

Here we used the definitions for Y and H from (1-30). Inverse Fourier

transforming (1-43a) and (1-44a) over ky,k and @ yields the impuilse

h
response of each of the extrapolation filters (1-43a) and (1-44a).

Notice that (1-44b) is the non-retarded Sep operator.

In the following figures, discretization intervals were taken to be
Ay = Ah = Az = 25 m and At = 16 msec . The velocity of the medium is
3000 m/sec and the non-zero offset considered is h = 400 m. No attempt

was made to remove wraparound effects in y, h and t.

Figure 1-2 shows the (m.ky) -plane for constant z and h. The tran-

sition boundary from the propagation to the evanescent region widens as
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temporal freguency increases.

Figure 1-3 shows the (ky.z) -plane for constant w and h. Again the
abrupt change at ky = 2 w / v occurs due to transition from the propaga-
tion to the evanescent region. The zero-offset case (a) clearly shows
evanescent energy dying off rapidly with depth. Moreover, the width of
the propagation region stays constant with depth. The non-zero offset
case (b), however, indicates that the width of the propagation region
varies with depth, being zero at the surface and 1increasing rapidly and
asymptotically to the zero-offset case. The physical interpretation of
this depth-dependency is quite intuitive: H becomes less and less signi-
ficant at greater depths and Y becomes the dominating wavenumber. On a
CMP gather, moveout will decrease at great depths, 1mplying a nearly
zero spatial frequency k, . Referring to the Sep operator {(c), we do

h
not observe such a variation in depth.

Figure 1-4 shows the (y,z) -ptane for constant @« and h. The zero-
offset case (a) represents the response of a monochromatic wave imping-
ing on a point aperture. Note the circular wavefronts centered at the
aperture. The amplitude on a particular wavefront 1s strongest on the
z-axis, and dies off away from it. The non-zero offset case (b) shows
elliptical wavefronts that are difficult to relate to a physical situa-
tion. The Sep operator (c} 1s trying and failing to simulate the ellipt-

ical wavefronts.

Figure 1-5 shows snapshot pictures of the (y,z)-plane at constant t
and h. The zero-offset case (a) shows a circular wavefront, whereas the
non-zero offset case {b) shows two elliptical wavefronts, one for h =
400 m and the other for h = 1200 m. The presence of the latter is due to
wraparound in h. The (y,z)-plane for the Sep operator (c¢) also has two
wavefronts, for h = 400 m and h = 1200 m. Although the wavefront for h =
400 m appears to be in good agreement with the true elliptical wavefront
of (b) up to fairly wide angles from the vertical, the wavefronts asso-
ciated with the far offset (h = 1200 m) are hardly in agreement at all.

Figure 1-6 shows the (y.,t)-plane for constant h and z. Each figure
is actually a superposition of four (y,t)-planes at different z-levels.

These figures represent the impulse responses of DSR and Sep to point
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scatterers buried at indicated depths z. The zero-offset case {(a) has
hyperbolic trajectories, while the non-zero offset case (b) has the
well-known table top trajectories. The difference between the zero
offset and the non-zeroc offset 1s quite evident, particularly for the
two shallow scatterers. The moveout is also obvious as one compares the
arrival times. In Appendix B (Section B-1), the circular and elliptical
wavefronts of Figure 1-5 and the hyperbolic and table-top loci of
arrivals 1in Figure 1-6 are confirmed by the stationary phase approxima-
tion to DSR. Although the Sep operator handles the NMO to a certain
extent (perfect at the top of each trajectory) , it cannot account for
the table-top trajectories indicated by the nonzero offset section (b).
A stationary phase approximation to the Sep operator is also given 1in
Appendix B (Section B-3).

In summary, response characteristics clearly demonstrate that the
Sep operator does not handle wide offsets properly, especially in the
shallow portion of common offset sections. In Chapter 2. we will develop

a theory which will remedy this problem to a certain degree of accuracy.
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m, (b) OSR with h = 400 m? and (c¢) Sep with h = 400 m. Transition to

nnnnnnn t energy occurs at ky = 2w/v .
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FIG. 1-4. Real part of (y.z) -plane at @ = 16 Hz. (a) DSR with h = 0
m, {(b) DSR with h = 400 m, and (¢) Sep with h = 400 m. Note the semi
circular wavefronts for h = 0 in (a) turn into semi-elliptical wave
fronts foer h = 400 m 1in (b). The Sep operator fails to simulate the
semi-elliptical wavefronts. Physically, the top frame is & picture of
waves passing through point apertures spaced evenly along the y-axis.



l W«:@ ~

i f; mu oy

I::«‘ 41

‘h

'f

i
a

l'f‘ qu ‘ i Lg

1
it |
i
M Y
!
' ' Wy, « JI
1‘ o
I i
{44 <‘ 4l
. Pl u
| ) Wi '
| ) . | i i

FIG. 1-5. Real part of (y,z) -plane at t = 1.024 sec. (a) DSR with h

0 m, (b) DSR with h = 400 m, and {c) Sep with h = 400 m. Due to wra-
paround in h, we observe two wavefronts in (b) and (c), one for h = 400
m and one for h = 1200 m.
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