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Appendix A
The Minimum Mean Square Error Esti-

mator

The objective of this appendix is to prove that the estimator ;z(x)
that minimizes the mean square error, E[R - FZ(X)]Z. is identical to the
conditional mean, E[R|X=x]. The analysis is specialized to the case of
estimating R given scalar observations. The extension to vector observa-
tions is trivial. We follow Kalaith's (1376) derivation. Formally, the
mean square errror ({(MSE) is defined in terms of the joint probability

density function between the observation X and the gquantity to be
estimated R:

MSE & E[R - Fz(x)]z

JJ'[r - Fz(x)]sz,x(r.x) dx dr (A1)

Using the identity

fR’x(r.x) = fRIx(rlx) fx(x)

in equation (Al) gives

MSE = J £ (x) dx J [r - Fz(x)]zrmx(rnx) dr (A2)

Because fx(x)dx represents a probability that s inherently positive,
the MSE 1s minimized by minimizing &, defined by

e & f [r - Fz(x)]szlx(rlx) dr

for every value of x. The result of this minimization can be obtained by
realizing that e is a moment of 1inertia, and hence ;z(x) is simply the
centroid:
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Fz(x) = L rfpy(rix) dr = E[R|x=x] (A3)

An alternative way of obtaining equation (A3) is by setting 63/6?2 =0,

and solving the resulting equation for Fz(x).

- 75 -



Appendix B

Properties of the Conditional Mean

In this appendix, we show that the non-linearity Fl(x) resulting
from solving equation (2.6) in the text can be approximated by a thres-

hold device:

1]
o

Fl(x) Ixl < x

Q
LA 2 G B

X Ix| 2 x
c

qQ

where xc is the device thresheld. This non-linearity was implemented and

results were virtually identical to those obtained using Fz(x).

To analyze the shape of ;l(x), equation (2.8) must be interpreted

correctly:

T (x)
S

-~ 00

fRIx(rlx) dr = 0.5

Using the pdfs for R and N as given by equations (2.7b) and (2.12b), the

unique nature of the above equation becomes apparent:

Fl(x)
A J G(r)fN(x-r‘) dr +
(%)
(1-) ' Gle2, r2)F (x-r) dr = & F(x) (B1)
o cr,r' N X-r r = 2 X X

If we assume Fl(x) >> 0, the first integral 1in equation (Bl) causes

no difficulty, and the delta function sifts out the value at r=0, 1.e.

rL(x)
1 2 2 1
A (x) + (1-3) o{ 6(e2,r2)F (x-r) dr = = F, (x)
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It is straightforward to simplify the above eguation, the result being

2
7 o= e ey T2 (82)
\I' =00 G(aI » X )
r(x) - px » ’
q(x) = — Poe =+
\| 28
6'2 0'272
__r 2 _rN
p = 2 » p - 2
o o

If x»0, the RHS of equation (B2) -0 and therefore the integral must have

a value of SEE or
q(x) = 0 = (x) = px (83)

From equation (B3) we conclude that the asymptotic behavior of Fl(x) is
identical to Fz(x).

The delta function conceptually has a width 2e(-e€ < r < e). When
Fl(x) < -s, the first 1integral of equation (Bl) has no contribution;
when rl(x) = 0, the integral equals (X/Z)fN(x), and finally a full con-
tribution of XFN(x) is reached when rl(x) = ¢. Denoting the x coordi-
nate at which rl(x) = e by L equation (Bl) gives a complicated rela-
tion for xc in terms of A, cf and cz. The c¢lutter can be reduced to the

N
following:

R A G(‘:'xi)
=7 =1 22 (B4)
\I' -0 G(‘ 1xc)

. - Px_ - €

€\

Further simplification requires restrictions on the range of X and

cﬁ/v: = S. First, assume a. is such that the integral in equation (B4)

can be approximated by the first term in its asymptotic expansion (the

expansion 1is good for qc>1):
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1 qc 2 1 exP('Qi)
— J e z 7 l - — (B5)
\[x 0 \ltqc

Substituting equation (B5) into (B4) and letting e=0 gives

2
q -
¢ TS| A 2 N
e " =\ 1*5[1-x MRS xc] (86)
If A\ and S are restricted so that
—
A 2 N
1-) 2 \ #S X (B7)
c
$> 1

Equation (BE) can be simplified to give a closed form solution for xc in

terms of S, A\, and oN:

1
- \SA|[Z
X, = \IZvN {]n[l-k ]} (B8)

The term N is related to . [see equation (2.16)] and so equation (B8)
can be solved for the ratio xc/cx. After viewing Figure 2.2, 1in which
equation (Bl) was solved computationally without approximations, it is
evident +that if S and X are restricted as in equation (B7), a valid
model for Fl(x) is the one given at the beginning of the appendix. This

certainly appears to be the simplest non-linearity possible.
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Appendix C

Penalty Function Factorization

The purpose of this appendix 1s to show that the mean square error
(MSE) can be factored into a penalty function P(X,§;x,3) and the notise

variance d‘s.

Recall the definition of the MSE:

(Mse) K = E[F(xk) - R]z (C1)

Henceforth, superscripts are dropped with the understanding that all

variables refer to the k-th iteration. Specializing the analysis to the

case r = Fz, equation (Cl) becomes

MSE

JU'[FZ(X) - r]sz'x(r.x) dr dx

fr [Fz(r+n) - r]sz(r) FN(n) dr dn (c2)

The probability density functions (pdf) for both R and N are given by
equations (2.7b) and (2.12b) respectively:

fR(r) = A8 (r) + (I-A)G(ci.rz)

Fy(n) = e(aﬁ.nz)

Using these pdfs in equation (C2) and integrating out the delta function

gives

MSE = X J‘Fg(n)fN(n) dn + (1-\) Jv‘[Fz(r+n) - r]2
e(cf,rz)fN(n) dr dn (c3)

The reflection coefficient estimator Fz(x) is given by equation (2.14)
in  the text. Using the variables (S,X), this equation can be rewritten
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as

rz(x) = xhz(x)
- 2
S ~ -X
h2(x) = T_:-S-1+ c exp|—%
2¢
h
P SR :
c = 1_x\ll-'-S {C4)
2 (L18)7,2
o S X
; = (l-i)g + 1

Note that Fz(x) is now a function of 3, A and ¢.. A similar transforma-

tion can be made on the functions G(ci.rz) and fN(n) to give

2
6lel.rdy = [_a_]l/z L expl2r

r 2%S . 25‘2
X
ajl/z 1 -an2
fN(n) = {2—-] -d_-—exp — (C5)
" X Zcx

a8 = (1-A)8 +1

Both G(ci,rz) and fN(n) are now functions of S, X and e, A1l that
remains 1is to transform the variables in equation (C3) into dimension-

less quantities, using

r L
R = P q = P (Ce)
X X

Substituting equation (C6) into {C3) gives

MSE = c: P'(X,S;A,S)

PHR.EN.S) = 2 S Ta(a)f(a) da +
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(n) J7 [Fytova) - p)%atelp")\(a) ¢p da (c7)

In equation (C7), the functions FZ’ fN and G are as 1in equations (C4)

and (C5) with ui replaced by unity. Finally, converting the ci multi-

plying P' into c: gives the result
MSE = P(X,5:x,5)el
P(X.S:A.8) = a PI(X,5:),5)
Neither the single nor the double integral 1n equation (C7) can be

evaluated analytically, and both were computed for each set of variables

i.g to obtain the plots of Figure 2.1.
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Appendix D

Bussgang Theorems

The purpose of this appendix is to prove two thearems referred to
in Chapter II. We start by proving yet another theorem that defines the

class of all Bussgang processes.

As a preliminary, recall the definition for a process {Xt} to be

Bussgang. Letting z( ) refer to any ZNL, we have:

E|)(_iz()(1,+ )|
If LS = constant,any 7, (D1)
E[X.X. ]
ii+r
Then {Xt} is Bussgang.
Two common classes of Bussgang processes are (i) all 1ndependent
processes and (ii) all colored Gaussian processes. Less common Bussgang

processes are telegraph waves and their derivatives [if z( )} is odd].

Theorem One: A second order, stationary stochastic process is Bussgang

if and only if
E[Xi+flx1=x] = p(r)x
p(r) = normalized autocorrelation (A/C) function

Proof:
(i) For {Xt} to be Bussgang, we require equation (Dl) to be valid:
172

E[xlz(xz)] = constant E[X X ] (D2)

but

E[Xlz()(z)] a ffxlz(xz)fxl'xz(xl,xz)dxldxz
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= fz(xz)[J'xlfxlIxz(xllxz)dxl]fxz(xz)dx2

The term in brackets is the conditional expectation. hence

E[xlz(xz)] . J'z(xz)E[Xl|x2=x2]fx2(x2)dx2 (D3)

Also, define E[xlxz] via

E[XIXZ] A r(r) (D4)

(11) Substituting equations (DB3) and (D4) into equation (D2), the con-

stant is independent of + if and only if
E[X1|X2=x2] = r(r)h(xz) (D5)

h( ) = unspecified function

(111) When ==0, equation (D5) becomes

.E[x1|x1=x2]

2 r(D)h(xZ)

r(0)h(x2)

x
"

n

h(x2) () {D6)

Substituting equation (D6) into (D5) gives the stated theorem.

Theorem One can be used to readily determine whether a process is
Bussgang (e.g. 1t 1s well known that the conditional mean of a Gaussian
distribution 1s Tinear - the same holds for telegraph waves). The
remainder of the appendix is concerned with establishing the results

quoted in Chapter II.

The motivation for proposing the next theorem occurred while
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studying the deconvolution of the synthetic data. During the course of
iterating, it was noted that a tiny echo was successively eliminated
from the deconvolution X - This indicated to us that the algorithm was
trying to force the deconvolved time series to be Bussgang by removing
the echo. A simple way to simulate an echo 1s to input a reflection

sequence into & two-term filter.

Theorem Two: If a stationary independent process {Ct}. characterized by
a2 normal mixture, is input into a two-term filter, (1,2), the resulting

process {Xt} is not Bussgang.

Proof:

(i) If we can prove that E XN+fIXN=x] » p{r)x , then the above theorem
implies {Xt} is not Bussgang.

(i1i1) The process {Xt} is related to {Ct} via
X, = C + aC {D7)

Using equation (D7), the normalized A/C of {Xt} can be derived:

p(0) =1

p(1) = — | (08)
l+a

p(r) = 0, |r|22

(111) Next, expand the conditional expectation:

E[XN+rIXN=x] = E[CN+T ML IR L acN+1="] (D3)

For lr|#1, 1t is evident from equation (D3) that

E[XN+7|XN=X] = p{e)x, |r|nl
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If the same holds for |¢]=1, {Kt} would be Bussgang. It is simple, yet
tedious, to prove otherwise. For s=+1, equation (D9) becomes (simplify-

ing the notation):

E[XN+1|XN=x] = E[Cz + aC,lc aC2=x]

'}

E[CZIC1 + aC2=x]

S (c.,x)dc

+ac," 2 2
(x)

c, f
2 CZ'CI

f
C1+aC2

J'czfc(cz)fc(x - acz)dc

f (x)
C1+aC2

2

(D10)

(iv) The pdf of {Ct} is characterized by a normal mixture:
fole) = AG(1,c2) + (1-0)6(s%,¢2) (D11)

In equation (D11), the variance of the first Gaussian has been normal-

ized to one.

(v) Equation (D11) can be used to calculate both numerator and denomina-
tor of equation (D10). Noting that the pdf in the denominator is simply
a8 linear combination of normal RVs, equation (D10) becomes (omitting

algebra):

+
_ _ L NS x)
E[XN+1'xn'x] = XD, 5.0

k26(1+a2) + (1-x)26[52(1+52)]

NS, x) = 5
l+a
6(s?+a?)  sZa(1+s%a?)
+ x{1-)) 5t > 7
S +a 1+5a

B(X.S.x) = A2G(1+2%) + (1-x)26[52(1+a2)]
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+ x(l-x)[ﬁ(l+a252) + G(Sz+a2)]

The variable x2 has been omitted from the function G for notational con-
venijence. At this point it is evident that {Xt} is not Bussgang unless
A=0, =1 or S=1, i.e. unless {Ct} is Gaussian. It is 1instructive, how-

ever, to compare the negative lag with the above result.

(vi) The conditional mean for r=-1 is derived in an analagous manner,

resulting in

1 . N (r,S,%)
E[XNIXN+1_X] S TEWRTD

A26(1+a%) + (1-x)zs[sz(1+a2)]

1+a2

N (A,S,x) =

6(1+5%a%)  s%6(sZ+a?)
+ A(1-)) > % + B
145 a S +a

Note that when {Ct} is Gaussian, NY=NTLOIf {Ct} is a normal mixture,
however, N+#N‘, and this means the mixture is sensitive to phases - &

property not shared by Gaussian processes.

The extension of Theorem Two for (i) arbitrary length wavelets and
(i1) arbitrary non-Gaussian pdfs is not possible. In our analysis, we
restrict the wavelet to being "delta-like." The restfiction is necessary

to avoid the implications of the Central Limit Theorem.

Theorem Three: An independent, stochastic process {Ct}. convolved with a

delta-1ike wavelet w

¢ is Bussgang if and only if the process {Ct} is

Gaussian.

Proof:

(i) If - A1l Gaussian processes are Bussgang.

(i1) Only if - Let:

X, =2¢C W (D12)



] 1iLa. A
wt is delta-like: HO 1, wt(<w0. t#0

{Ct} is a zero mean, independent process with pdf fc(c)

(111) If {Xt} is Bussgang, the crosscorrelation (C/C) between {Xt} and
{z(Xt)} must be symmetric. Our strategy is to show that the €/C is sym-
metric if and only if {Ct} is Gaussian. Letting z{ ) be a ZNL, we can

approximate it, according to the delta-11ike character of wt:

z(X1) = z(Ci) + z'(C1) b1 C1_T v, (D13)

72¢0 2 2

(iv) The C/C can be calculated using equations (D12) and {D13), giving

the result:
E[sz(xj)] = A+B+C+D (D14)
ij=i+¢
2 2
A=28 . B=w Z, ¢#0 C=w o 1', rw0 Dz=2'e¢ 2 w w
i3 -7 r k k-
k20,
2=k [c z(c ) 2'=E[2'(C.) o2= [c?
i i i i

{v) Assuming wf#w_' , we require the coefficients of W, and v_, to be

identical for the C/C to be symmetric:

S cz(c)Fc(c)dc = cZJ'%% fc(c)dc (D15)

After integrating equation (D15) by parts, we obtain
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2 df
J z(c)[cfc(c) -0 dc]dc = 0, any z
The arbitrariness of the ZNL means the integrand in the above -equation

must be identically zero:

2t
cfc(c) =0
Fole) = 6(e2,c?)

(vi) The remaining part of the proof 1s to consider the case when
wf=w_r, i.e. a symmetric wavelet is present. For {Xt) to be Bussgang,
the ratjo of the C/C to the A/C at lag  must be identical to the ratio

at lag 0, independent of the ZNL:

E[X1z(x1+f)] ] E[X1z(x1)]

iy T F T T2
E[X1X1+T] E[X1]

The A/C 1is obtained by setting Z=c2 and setting Z'=1 in the ¢/C for-
mula. If equation (D14) 1s substituted into (D16) and all terms of O(Ni)

(D16)

are dropped, eventually this result is obtained:

This 1s 1dentical to equation (D15), and the proof 1s complete.
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