Chapter I
Modeling Seismic Impedance with Mar-

kov Chains

A stochastic wmodel describing impedance is developed in this
chapter. One way of constructing in s7tu impedance logs is by multiply-
ing well logs of sonic velocity and rock density together. Another less
expensive method 1s to map the geological section exposed 1n a road cut.
In either case, & common characteristic of the resulting sequence is the
box-car or blocky appearance of the log. Stochastically this means that
given a certain rock, say carbonate, there is a high probability that
the rock 1immediately above it 1in the log is also carbonate. If, on the
other hand, a new rock type is encountered, say shale, then the proba-
bility of finding the shale does not depend on the knowledge that the
old rock type was carbonate. Of course the 1last observation presumes
that the length of sedimentary column under study is sufficiently long,
e.g. there is an obvious correlation in rock change in a sand-shale

sequence.

A well log records the historical sequence of deposition; so the
resulting impedance function, obtained by multiplying sonic velocity by
density, represents a depth series. A seismogram, however, is recorded
as a function of time. Integrating a deconvolved seismogram results 1in
impedance indexed as a time series. We have a choice; then, of discre-
tizing impedance as either a function of time or depth, and the result-
ing stochastic model reflects this choice. We use the stochastic model
to aid 1in seismogram deconvolution and inversion, and therefore view
impedance as a time seguence. This, of course, necessitates the conver-

sion of well logs into time functions with the known interval velocity.

A considerable portion of this chapter 1is devoted to developing
properties of the model, especially the Bussgang property. Say a time
series undergoes an amplitude distortion in a time-varying instantaneous
non-1linear device. Then, if the autocorrelation of the input 1s propor-
tional to the crosscorrelation of the input and output, the process from

which the time series was realized is said to be Bussgang. A discussion



on the geophysical significance of Bussgang processes will be delayed

until Chapter II.

1.1. Impedance and Reflectivity

A review of the equations relating impedance and reflectivity is in
order. From plane wave, normal incidence theory, the reflection coeffi-

cient ¢ at the k-th interface 1s computed from the impedances 1 and

k k
1k+1 via
i - i
YT T (1.1)
k+1 k
Inverting equation (1.1) and solving for the 1k gives
k 1+ c1
her = W 0T (1.2)
i=1 i
Next, define z, as the logarithm of impedance [log(imped)]:
1k+1
Zk_._1 = n —T—— (1.3)
1
With this substitution, equation (1.2) becomes
k 1+ c1
21 & 2O T (1.42)
i=1 i

A good approximation of equation (1.4a) results by using

1 + ¢, 3
In |—2 = 2c1 + 0(c1)

l - c1

Hence, for "small" ¢, equation {l.4a) becomes

1

k
zk+1 = f 2c



= z 4+ 2¢ (1.4b)

Equation (1.4b) gives a Tinear relationship between z and c.

1.2. The Stochastic Model of Impedance

Three examples of impedance logs are shown in Figure 1.1. These
logs were supplied by Chevron 011 Field Research Company and are the
result of carefully editing sonic velocity and density logs, and then
multiplying the two together. The reflectivity log was derived from the
impedance log using equation (1.1). The blockiness of the latter log is

apparent from the plots.

Another perspective on blockiness is illustrated by plotting scat-

te a . .
rgrams, xk Vs xk+1

shows that from a probabilistic peint of view, 1t is much easier to pro-

of reflectivity and 1log{imped). Figure 1.2

pose a model for Tog(imped), because of its striking correlation, than

it is for reflectivity.

The degree of blockiness in a well 1log is proportional to the
degree of dependence between adjacent rock types. The stochastic model,
therefore, must be at least of second order. The actual order depends
on the physics of the process, the 1length of data available for
analysis, and the degree of complexity of the model. For the 1last two
reasons, only one 1lag of memory was retained, and we decided to model

impedance as a Markov chain. A brief review of Markov chains follows.

1.3. Markov Chains

Many excellent textbooks have been written on Markov chains. One
that 1s especially readable is by Kemeny and Snell (1960). The following

notation essentially follows theirs.

A sequence of samples has an underlying probability distribution
that is Markov if and only if the probability of obtaining a new sample,
given the history of the sequence, depends only on the current sample.

The sequence of samples is called a "chain," and the term “"state” is
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Figure 1.1. Reflectivity and log(imped) (top and bottom plat in
each box) for three wells - A,B,C - provided by Chevron 0il Field
Research Company. Number of time samples in Well A = 1153, Well B =
587, Well C = 761.
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Figure 1.2. Top row - 3Scattergrams of reflectivity for three wells
of Figure 1.1. Note the presence of many plus/minus doublets 1in the
second and fourth quadrants, perhaps signifying thin beds. Bofttom row -
Scattergrams of log(imped) for the three wells of Figure 1.1. The
striking correlation (%1.) suggests using a Markov chain for a stochas-
t1c model of impedance.

used in place of “"sample." 1In the case of a sedimentary column, M
rock types define M states S i=1,2,...M. Note that a state is
inherently valueless since any sequence of objects can be broken into
states. In our particular situation, we will associate a value of

impedance [or log(imped)] with each of the states by constructing the M



component value vector x.

The outcome at any particular time n in the chain is a state sj,
and this statement is written compactly as Qn = sj. where On is the
outcome function at time n. The statement that a sequence is Markov

follows:

Pr(Qn = SJIQ =5

n-1 i Qoo h....) = Pr(Qn = s [Q z s1)(1.5)

i n-1
where Pr 1s short for probability, 0 <€ Pr € 1. Equation (1.5) intro-
duces the concept of a probability transition matrix {(PTM), P, for the

chain:

{P}ij = (1,3) element of matrix P = Pij
= Pr(On = sJIQn_1 = 51) {(1.8)
zp = 1 ; 1 =1,2,...M

i
i J
Note that the rows of P sum to 1, not the columns. Fixing the row
index to i = 3, for example, the PTM gives the probability of Jjumping
from Sy to s where 3 s the current column index. A "blocky" chain

J

would have 533, the tlargest element in the row.

At the n-th step in a chain, the probability of being in any state
is given by the probability state vector L It can easily be shown
that

L S P (1.7a)
T T .n
or ¥, = ¥, P (1.7b)
T, = 1

Equation (1.7b) 1s quite remarkable. Essentially, computing p" keeps

track of how many different ways a state at the n-th step can be



initiated from the O0-th step. The probability mass vector a (praoba-
bil1ity density function for continuous states) i1s the steady-state solu-

tion of equation {(1.7a):

« = a P (1.8)

A more fundamental matrix than the PTM 1s the matrix formed from
the unconditional probabilities. We call this matrix K for counting

matrix:

Krig = Koy = PriQp = sy Qg = s,
= PrlQ _, = s, 1 PriQ = s;10.; = s,]
= P
K = DP (1.9)

where D 1s the diagonal matrix with « along the diagonal

z K1. = 1
ij
? l(j‘1 = a, . (1.10)

We consider K to be the fundamental matrix of Markov chains because

both &« and P can be calculated from K via (1.10) and (1.9).

Algebraically, it is advantageous to consider the sequence {Xk} to
be zero mean, where {Xk} is shorthand for a sequence of random vari-
ables (RV) and is formed by assigning a value to each state in the

chain. If we assume the sequences to be stationary. zero mean implies:

EX = 2 Pr(Qn=s1)x1



EX = a'x = 0 (1.11)

Since both probability and impedance are positive, uTx > 0. Negative
values for x are possible if Jlog(imped) 1s modeled vs. 1imped. The
Markov model is valid in both cases, since Tlogarithm 1is a one-to-one
mapping. With an abuse of notation, let x correspond to the value
vector for Tog(fimped) and canstrain the choice of values so that equa-
tion (1.11) 1is satisfied. Much of the analysis in Markov Chain theory
[e.g. a1l of the results derived in Kemeny and Snell (1960)] 1is accom-
plished without having to specify a conversion vector. In this aspect,
we differ. Most of the significant results in this chapter (e.g. the
autocorrelation derivation 1in Section 1.6) demand the specification of
such a vector. Some simple experiments, described next, dindicated an

appropriate one.

1.4. Synthetic Log Computation

A comparison between the actual logs of Figure 1.1 and those syn-
thesized using a Markov chain approach is shown in Figure 1.3. Before
discussing the comparison, the technique used to generate the synthetic

logs will be explained.

The original log was quantized into fifteen states. Two different
quantization schemes were tried. In the first, the range of impedance
values was partitioned into uniform intervals with each interval defin-
ing a state. Events were then assigned the states corresponding to the
intervals they fell within. The second scheme used quantiles selected
from the data to partition the impedance range. Although this scheme
resolves small events very well (many small events = many states), large
events are poorly resolved due to their scarcity. The first scheme

resolves all events uniformly and was adopted for this reason.
After gquantizing, K 1is formed:

number of s _-s_  pairs
K = 13 (1.12)
id number of samples




Then, « and P are computed via equations (1.10) and (1.9). To start
the chain, a state Sk is chosen from the distribution @ (calling a

random number generator). The state vector LB is then formed by

inserting the value 1 at the k-th position in the vector. The new

state vector L8] can then be computed as rgP (k-th row of P). As

before, a new state sj is chosen from the distribution LEE and the
whole procedure is re-started. In this way a synthetic state 1log is
created. The conversion from state to value is accomplished by assign-

ing values from x to the states.

The top plots of Figure 1.3 represents the original 1log gquantized
into 15 states. The large number of states has resulted in both large
and small-scale features of the original log being retained in the quan-
tized version (compare Figure 1.1). Three synthetics are shown for each
original log, and a cursory examination indicates that all synthetics
"look" 11ke 1logs. Of course the stochastic model has 225 degrees of
freedom ( MZ, in general) corresponding to the number of elements in
K. and it is not surprising that the synthetics mimic the original 1logs
so well. The next two sections are concerned with reducing the degrees

of freedom in the model.

1.5. Reversible Chains

Most sedimentary sections are reversible, that is, tops and bottoms
are difficult to distinguish. Probabilistically, this means

Pr(0n=sj. Qn_1=s1) = Pr(0n=si, Qn-1=sj)
i = Ky
K = o«
In all the counting matrices investigated, KT Z K. Corresponding ele-

ments differ by < 1% on average; hence, constraining K to be sym-
metric is geologically sound and as a bonus, reduces the degree of

freedom in the model from M2 to M2/2. A first order model, one that
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Figure 1.3. The top plot of each group is the original Tog(imped)
of Figure 1.1 quantized into 15 states. The bottom three plots are syn-
thetics generated using the probability transition matrix derived from
the top 1log. In a1l cases, both fine-scale and gross features of the
quantized logs are preserved in the synthetics.
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treats samples independently, 1is completely specified by M-1 parame-
ters, corresponding to the probability mass function. This property
sets the lower bound for the number of parameters necessary to describe
a second order model at M. We would like to force the K matrix to
have only M parameters but in doing so we want to retain the blockiness
characteristic of the original process. Correlation is one statistic
that certainly reflects the blockiness of a time series, and in the next

section an expression for the autocorrelation of a Markov chain is

derived.

1.6. Autocorrelation of the Chain

The autocorrelation for the chain {Xn} at lag k is computed as

follows:

Y
Rxx(k) E xn xn+k

= ¥ x.x Pr(Qn=si, Q )

=g
i3 i3 n+k T 3

= fj x1xj Pr(Qn=s1) Pr(Qn+k=SjIQn=s1)
= 2 a,x Pk.x.. where Pk‘ means {PK}1j

13 171 133 13

x' b P* x (1.13)

Using equation (1.13), the autocorrelation for the three quantized 1logs
of Figure 1.1 (top plots in Figure 1.3) were computed and the results
plotted in Figure 1.4. A best fit exponential curve 1is also plotted

with the autocorrelation function.

The agreement for large lags is excellent, but for lags c¢lose to
zero, the exponential lies below the actual curve, indicating the pres-
ence of a noise-l1ike component 1in the actual logs. We call this noise
"geological noise," and the reader is referred to the section on the

telegraph matrix for a further discussion. The exponential 1is a

- 11 -
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Figure 1.4. Autocorrelation function of the three logs of Figure
1.3 plotted with a best fit exponential. In wells A and B, the curves
are indistinguishable except at the origin, where the exponential falls
below the actual curve. In Well C, the two curves are distinguishable
at all Tags. The presence of a noise component on the logs 1s indicated
by the difference 1in the two curves at the origin. For Well A,
A =0.98; Well B, A = 0.96; Well C, XA = 0.98, where X\ equals the coeffi-
cient of the exponential.

parsimonious description of an autocorrelation function, and we pose the
question, how can P {(or K) be smoothed so that the correlation is purely
exponential? Assuming P has a complete set of eigenvectors, we can

decompose it into row and column eigenvectors:

M T
P = Za.au.f. (1.14)
1 T 1 1

b, = column eigenvector

8 = row eigenvector

T

Using (1.14), Pk becomes

- 12 -



M
AT SN I (1.15)
1 1 1 1

Substituting equation (1.15) 1into equation (1.13) gives

M
T k T
Rxx(k) = x D f X1 by ﬂ1 X

But aTx = 0 (zero-mean process): hence, calling ﬁl = & gives

M

T k T
Rxx(k) = x D 2 Xi M ﬂi X (1.186)

For equation (1.16) to give & pure exponential decay, there are two

alternatives:

(a) Xi = X, 1 =2,3,...M
(b) Ay = A, 1 =2,3,...R
A, = 0, isR+1,R+2,...M

In model (a), the exponential will be continuous for all lags, whereas
in model (b), a singularity may exist in going from k = 0 to k = 1.
In a subsequent section it 1is shown that reflectivity functions do
indeed have a singularity when going from lag 0 to lag 1 and model (b)
1s the appropriate one. The small discontinuity in the impedance corre-
lation function at lag 0 would also suggest model (b) for impedance
sequences. Theoretically, such a choice causes difficulty and we have
been unable to prove that any of the properties that exist for impedance
PTMs formed using model (a), hold for 1impedance PTMs having zero -eigen-
values. For this reason wmodel (a) was adopted for impedance and equa-

tion (1.16) becomes:

T k T
Rxx(k) = x DA Z , 31 X
. 2
M
But I = Z . BT
p



Ix

l
4
=
e
™
s
X

L]
>
L=
x

Hence, R_.(k)

X (1.17)

Therefore, if we force P to have M-1 equal eigenvalues, the process
will have a purely exponential decay, regardless of what value 1s

assigned to the corresponding state, as long as aTx = 0.

1.7. The Telegraph Matrix PT

In this section, we describe a «class of PTMs having a purely
exponential autocorrelation function. We denote these matrices by PT;
the choice of subscript will be apparent later. P is completely

T
specified by only M parameters.

A class of PTMs that have a non-zero eigenvalue repeated M-1

times is given by the construction,

AT+ (1-X)Ta (1.18)

-
it

I = column vector of ones

»
]

only eigenvalue of P not equaling 1

T

Proof:
We have to show that (1) aT is a row efgenvector of eigenvalue 1

and (ii) X is an eigenvalue repeated M-1 times.

(1) o o= Aa +(1-2)a Ta
= a (« T=1), O0.E.D.

T T Tw T

(11) BLPL = ABL+(1-2) B Ta

There are M-1 vectors ﬁ1. which can be chosen perpendicular to T,

hence:

- 14 -



From this we concTude that X\ 1is repeated M-1 times. Q.E.D.

Equation (1.18) 1s easily interpreted 1f the matrices involved are

written out explicitly:

— - — . -
1 o
1 T (1.19)
PT = A 1 + (1 - X) o
1 aT

Assume we are in state k. The parameter X is interpreted as the bias
of a coin (biased toward heads). If the result of a coin toss is heads,
we stay in state k; otherwise we have an opportunity to change states.
The matrix TaT represents an independent process since all rows are
identical. If the coin toss results in tails, we choose a new state,
independent of the previous state. It is quite possible to select state

-~

Sy again (especially 1if o is = 1) and the effect 1s to remain 1in
state Si- In terms of rocks, this means that at an unconformity, a
sand overlies a sand. The independence of T aT means the +transition
from a sand to shale is as likely as a transition from carbonate to
shale, given that an unconformity exists. This description 1s much like

a random telegraph signal when M=2; hence, the sdbscr1pt {T) in P

TD
which we call the telegraph matrix.
The corresponding counting matrix KT is
KT = DPT
T
= AD + (1 - Naa (1.20)

From (1.20) we conclude that KT is symmetric: hence, the chains are

reversible.

The coefficient of the best-fit exponential is chosen for the value

_1'5_



of X, which is regarded as a measure of blockiness. Since A 1is an
eigenvalue of a PTM, it has a range: -1 < XA £ 1. A value of X =1 indi-
cates a chain that never changes state and hence is perfectly blocky.
An independent process is represented by A\ = 0, and the corresponding
chain has no tendency to be blocky since it is uncorrelated. Negative
values of X indicate a chain that is gquite erratic, with a desire to
jump out of the current state. While 1t 1s hard to imagine an impedance
log having XA < 0, an argument can be made for reflectivity logs having
negative values.

The probability mass vectors for both PTMs, P and PT’ are
identicat. Coupled with the value of A, <chosen by the above method,

the M parameters of PT are completely specified.

When M s large, say 15, the difference between chains computed
using P and PT is considerable since P allows small-scale fluctua-
tions that PT prohibits. This point 1s 1l1lustrated in Figure 1.5 by
comparison of the top plot of each group with the synthetic logs com-
puted using PT. The synthetics can be made to Took noisy by adding some
"geological noise" onto the P chain. This noise, which is indepen-

T

dent of the PT chain, can be either uncorrelated (white) or weakly
correlated (A = 0), and its variance can be computed as the difference

in the curves of Figure 1.4 at zero-lag.

In summary, the telegraph matrix is the simplest second order sto-
chastic model of impedance possible. The model cannot simulate all
features of impedance logs; it will, however, simulate the blockiness
characteristic, which a first order model is incapable of reproducing.
The next section discusses the Bussgang property of PT' Will Gray
(1979) noted that variable norm deconvolution converges (in expectation)
to reflectivity sequences that are Bussgang. Before studying reflec-
tivity, however, we show that if the PTM characterizing 1log(imped) is

PT’ then log(imped) 1s Bussgang.

- 16 -
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Figure 1.5. The top plots are identical to the top plots of Figure
1.3. The bottom plots are synthetics generated using the telegraph
matrix P.. A1l fine-scale structure is lost in the synthetics; however,

the gross blockiness of the original logs is retained.
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1.8. The Bussgang Property of PT

Consider the process {Yt} formed by passing {Xt} through a 2zero-

memory non-l1inearity (ZNL):

Y, = ZNL(xt) (1.21)

The process {xt} has the Bussgang property if and only if

Exnxn+k - Rxx(k)
EX ny(k)

= constant, all k (1.22)
Y

n+k n
Restricting the PTM to be of the class PT. an expression for ny(k)
can be derived in an andalagous manner to that which gave eqguation
(1.13):

ny(k) = fj Yy %y Pr(0n+k=sj.0n=s1)
= 2 yTbx., k=0 (1.23)

Equation (1.23) 1s equally valid for negative lags. For instance,

ny(—l) E xn Yn+1

= x Ky (1.24)

Since ny(—l) is a scalar, transposing equation (1.24) does not change

the answer:

[
=~
Fad
>
"
)
-
—
S

A similar symmetry argument can be used for all other lags. Hence,

N Ikl T
ny(k) = A y D x

- 18 -



The process {Xt} is Bussgang since equation (1.22) holds, 1.e.

Rxx(k) - T D x
ny(k) T

#2 k)

1.9. Reflectivity from Impedance

Given two adjacent values of 1log(imped), either equation (1.4a)
or (1.4b) can be used to calculate reflectivity. In either case, the
new chain is constructed by combining adjacent states of the old chain.

Figure 1.6 illustrates the construction.

Log(imped) Qtnl=s(]j)

Refiectivity s( jk) R{n)=s( jk}

Figure 1.6. Combining adjacsnt states in the Tog(imped) chain
produces a new Markov chain of M~ states -- the reflectivity.

What are the properties of the reflectivity process, given that the
laog(imped) process was PT? For instance, do differential processes of
PT retain the Bussgang property of PT' or more fundamentally, are they
even Markov? In this section, it will be shown that reflectivity is
both Markov and Bussgang. This fact proves that there are at least two
equilibrium points for iterative deconvolution algorithms - the reflec-
tivity and log{imped) sequences. The next chapter discusses this point
in detail.

The PTM of the new chain FT has Hz states, and is related to
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T
F(id)-(k1) PrER, = Sty Ra1 = Sagy?
= pr(on =5, Q. _; =slo ;= s Qg = 51)
= PRl = sIQ Ly s QL = s By
= PrlQ = s lQ ;=5 ) 8
SR (1.25)

Equation {1.25) is proof that the expanded chain inherits the Markov
property of the original chain. The corresponding probability mass vec-

tor ; is constructed from K via

) PriR_ = 5(13)]
= Pr(Q =5, Q ; =5))
= K1j

Figure 1.7 shows the expansion of a three-state chain into a nine-state
chain and should clarify the notation used in the above equations. The
value vector x is formed by using either equation (l.4a) or (1.4b)
together with the original values x. 1In either case, it is simple to
show that

-rT -
ax = 0

i.e. the new chain 1is zero-mean. The mapping from state to value is
onto (not one-to-one). For instance, there are always M zero values

corresponding to the M states i=1,2,...,M. By partitioning

s

(11)°
the state-space ("lumping states") a mapping that is one-to-one can be
effected. The lumped procéss is no longer Markov, however. For this

reasaon, we retain M2 states.
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Figure 1.7. The original chain, chgracterized by the PTM PT ., and

counting matrix KT is expanded into M states, giving PT and a.

While theoretically advantageous, the PTM ﬁT has dimensions
(M2 X Mz) that quickly exhaust core storage in a computer. For this
reason, we computed synthetic reflectivity sequences (Figure 1.8) by
applying equation (1.4b) (differentiating) directly to the synthetic
log(imped) 1logs of Figure 1.5. The reasons for choosing equation
(1.4b) over (1.4a) will become apparent in the next section. As
expected, the actual reflectivity sequence (top figure) is much

"noisier” than the synthetic sequences.

The remainder of this chapter is concerned with establishing the

Bussgang property of the reflectivity sequences.

1.10. The Bussgang Property of’?}

Previously, it was shown that chains constructed using PT exhibit
the Bussgang property. Are the reflectivity sequences computed using FT
also Bussgang? To answer this, we first derive an expression for the

autocorrelation.
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Figure 1.8. A1l plots are the differentiated versions of Figure
1.5, As expected, the synthetics (bottom three plots) contain fewer
reflection coefficients than the actual reflectivity sequence (top

plot).
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Denoting reflectivity by C a random variable, -equation (1.4b)

k!

relates Ck to a differential process involving Xk [a random variable

representing log(imped)]:
c = X =X (1.26)

The autocorrelation of € s

Rcc(j,k) EC, C

E[(Xj - xj_l)(xk - X )] (1.27)
From equation (1.17), however, we have an expression for the autocorre-
lation of X:

R (t) = It where x' D x 4 1 (1.28)

XX

Expanding equation (1.27) and substituting equation (1.28) gives

RCC(O) = 1
.. (LA jti-1
R (t) = [—7;—J A . [t] >0 (1.29)
where the zero-lag has been normalized to one. The values of A

corresponding to the three chains of Figure 1.8 were substituted into
equation (1.29) and the results are plotted at the top of Figure 1.9.
The actual autocorrelation of the reflectivity sequences of Figure 1.1
is plotted at the bottom of Figure 1.9. The small negative values at
lag one in Figure 1.9, tep row, indicate that reflectivity 1s very
weakly correlated, so a valid probabilistic model <could treat reflec-
tivity as an independent process. The empirical autocorrelation {Figure
1.9, bottom row), however, has a much larger negative value at lag one,
indicating a dependent process, or failure of the telegraph model. The
reason for this discrepancy is two-fold. First, the actual reflectivity
sequence has many plus/minus doublets that are absent on the synthetic

logs. Secaond, the presence of white noise in the 1log{imped) process
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will give anticorrelated noise in the differential process. Note that
the derivation leading up to equation (1.29) assumes a purely differen-

tial process, and for this reason, equation (1.4b) was adopted.
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Figure 1.9. Top row - The theoretical autocorrelation function of
the three 1logs of Figure 1.8. based on the telegraph assumption. The
negative values for lags 2 1 are hardly visible since [(Xx - 1)/2] = 0.
One might conclude that reflectivity 1s an independent process on the
basis of these plots. Bottom row - The sample correlation function of
the reflectivity sequences of Figure 1.1. Note the large negative pulse

at lag 1.
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To show that {Ck} is Bussgang, it is necessary to derive a rela-
tion for the crosscorrelation of Ck with a ZNL. The calculation is
carried out in an earlier paper (SEP-16, p. 270). If the ZNL 1is res-
tricted to being odd, for example,

a

then {Ck} is indeed Bussgang.

1.11. Chapter Summary

Ne model impedance as a special type of Markov chain, one which s
constrained to have & purely exponential correlation function. The sto-
chastic model is parsimoniously described by M parameters, where M
is the number of states or rocks composing an impedance well lag. The
probability mass function of the states provides M-1 parameters, and
the "blockiness"” of the log determines the remaining degree of freedom.
Synthetic impedance and reflectivity logs constructed using the Markov
model mimic the blockiness of the original logs. Both synthetic
impedance and reflectivity are shown to be Bussgang, i.e. if the
sequence is input into an instantaneous non-linear device, then the
correlation of input and output is proportional te the autocorrelation
of the f1nput. This means that 1terative deconvolution algorithms have
at least two equilibrium points, namely reflectivity and impedance
sequences. Whether both of these are stable is another matter. The next

chapter will explore these latter points further.
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