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A STOCHASTIC MODEL FOR SEISMOGRAM ANALYSIS

Abstract

The blocky or box-car appearance of well logs suggests that, sto-
chastically, they can be modeled as Markov chains. Minimizing the
number of parameters necessary to describe the Markov chain results in a
stochastic model which we call a general telegraph wave. Such a parsi-
monious description, while neglecting small scale features of well logs,
preserves the blocky property in simulated well logs. The general tele-
graph wave describes not only well logs but also acoustic impedance and
refliectivity. The corresponding time series are highly non-Gaussian, a
property that can be advantageously used when developing algorithms for

seismogram deconvolution and inversion.

An algorithm that iteratively removes the source waveform present
in & suite of seismograms 1is developed and tested on real data. Assum-
ing a non-Gaussian reflectivity model, both the color and phase effects
of the source waveform are removable from the seismogram. The main
ingredient in the algorithm 1s a zero-memory (instantaneous) non-tinear
estimator of reflection coefficient amplitude. Forcing a filtered ver-
sion of the seismogram to resemble these estimates is accomplished

iteratively.

Finally, an algorithm that converts a deconvolution into acoustic
impedance is proposed. Here, the memory in the estimator, a consequence
of modeling impedance as a dependent process, plays a key role 1n con-
fining the resulting impedance function to a corrider of minimum-maximum
values. A feature of the algorithm is the ability to merge additional
information, besides the deconvoluticon, into the computation of
impedance. For instance, low frequency impedance information, as pro-
vided by wmean square velocity curves, can be easily incorporated into

the algorithm.
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Introduction

Geophysicists are commonly presented with the problem of having to
estimate acoustic impedance from seismograms. The estimation is usually
considered in two stages. First, the source waveform and all multiples
are removed from the seismogram and the resulting deconvolved seismogram
is then transformed into acoustic impedance. We call the latter process
sefsmogram inversion. The problem of deconvolving multiples from seismo-
grams is not addressed in this thesis; here the term deconvolution
should always be preceded by the adjective “"source waveform." For those
datasets in which multiples are significant and must be removed, the
theory presented here will offer no help. In areas where multiples can
be neglected, however, the mathematical models for source waveform
deconvolution and seismogram inversion proposed in this thesis may prove
useful. We use a statistical estimation theoretic approach to construct

the models.

The statistical approach to model building was elegantly summarized
by Box and Jenkins (1970, p.7):
“...The idea of using a mathematical model to describe the behavior
of & physical phenomenon is well established. In particular, it is
sometimes possible to derive a model based on physical laws, which
enables wus to calculate the value of some time~dependent quantity
nearly exactly at any instant of time... Probably no phenomenon is
totally deterministic, however, because unknown factors can occur.
In many problems we have to consider a time dependent phenomenon
for which it 1s not possible to write a deterministic model that
allows exact calculation of the future behavior of the phenomenon.
Nevertheless, it may be possible to derive a model that can be used
to calcutate the probab1lity of a future value 1Tying between two
specified 1imits. Such a model is called a probability model or a

stochastic model..."

The main component in each mathematical model is the prescription
of a stochastic model describing reflectivity, in the case of source

waveform deconvolution, and impedance, in the case of seismogram
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inversion. Actually such a prescription is implicit in any model of
deconvolution or seismogram inversion. Some recent non-Gaussian models
have had significant success. Wiggins (1977) developed a deconvolution
technique that minimized, heuristically, the entropy 1in a deconvolution.
Since Gaussian models maximize the entropy, his use of a non-Gaussian
model 1is evident. Another approach, pioneered by Claerbout and Muir
(1973) and subsequently refined by Taylor, Banks and McCoy (1979), uses
the L-1 vs. the L~2 norm to minimize deconvolution residuals. Both sets
of authors point out the robustness property of the L-1 norm. In addi-
tion, Scargle (13977) has shown that the L-1 norm is capable of determin-
ing phase dinformation when reflectivity is non-Gaussianly distributed,
while the L-2 norm 1isn’t. We also use non-Gaussian models here. The
significant difference between our approach and those above is that we

use the stochastic model explicitly 1in the problem formulation.

A model that has been used by some earth scientists to describe the
randomness observed 1in stratigraphic sequences 1is the Markov chain.
Krumbein and Dacey (1369) noted that simulations using the Markov chain
approach yielded synthetic sections similar to those seen in nature,
especially in cyclical deposits. Schwarzacher (1972) used a two state
Markov chain to simulate periods of deposition and non-deposition in a
random sedimentation model that he proposed. The time spent in a transi-
tion from one state to the other controlled the amount of deposition.
Such a model is called a semi-Markov or Markov renewaI model. A summary
of probabilistic methods as applied to geology is given by Merriam
(1972) and the reader is referred to it for a complete 1list of refer-

ences.

The Markov model 1s not the sole descriptor of acoustic impedance.
The problem of formulating a stochastic model so that acoustic impedance
can be estimated from seismograms has & dual in speech processing.
There, sound generated in the vocal system (source wavefaorm) is spec-
trally shaped by the transmission characteristics of the vocal tract
(acoustic impedance). Given a speech signal, speech analysis is con-
cerned with estimating the parameters of a model describing the vocal
tract. Commonly, the process of speech production is modelled as a

time-varying linear system (vocal tract) excited by a periodic pulse

- vii -



(sound generation). A summary of techniques available for estimating the
parameters of the model is given by Schafer and Markel (1979). These

techniques offer alternatives to the Markov model that we adopt.

The first chapter develops a stochastic model for impedance. A gen-
eral telegraph wave, a particular type of Markov chain, is used. The
stochastic model describing reflectivity follows from the model for
impedance. One reason for choosing tmpedance as the fundamental process
is that geologically 1t’s easier to describe the occurrence of rock
units than of reflection coefficients. Various properties of the model,
e.g. reversibility, Bussgangness, etc., are developed in Chapter 1. The
remaining chapters utilize the stochastic model in formulating solutions

to a few inverse problems in reflection seismology.

The problem of removing the source waveform from a seismogram has
traditionally been attempted using predictive deconvolution. The phase
of the waveform, however, is indeterminable using this technique and to
assure a unique solution, minimum phase is usually assumed. But the con-
cept that the earth’s reflection coefficients are non-Gaussianly distri-
buted atlows both the color and phase of the waveform to be determined.
Chapter Il develops an iterative deconvolution technique to do this. The
main ingredient in this algorithm is a zero memory non-linear estimator
of reflection coefficient amplitude. The zero memory property follows
from assuming that reflectivity 1s 1independent. This 1s inconsistent
with the Markov model proposed in Chapter I; however, results indicate

that such an approximation is valid in the present application.

The final chapter shows how the Markov model of impedance can be
used to deglitch well logs and, more importantly, to convert a deconvo-
lution into an impedance. Given the deconvolution, & non-linear estima-
tor of impedance is used to perform the inversion. Here the estimator
has memory, whereas in Chapter II it was memoryless. When integrating
the deconvolution, the memory plays a critical role in confining

impedance to a corridor of minimum-maximum values.

In summary, & non-Gaussian, dependent model of impedance (and
therefore reflectivity) has been proposed. This model can be used effec-

tively to develop new algorithms to solve old problems.
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