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Abstract

Elastic wave velocity anisotropy in rocks is easy to model if
the elements of the stiffness matrix satisfy a constraint equation. The
effects of the simplest kind of anisotropy on depth sections can then

be accounted for by a simple stretch of the z-axis.

Introduction

Velocity analyses of seismic data measure the speed with which
sound travels in the horizontal direction. Well logs measure the speed
of sound that travels in a vertical direction. There is often a
discrepancy between the two measurements and this implies an ambiguity
in the time-depth conversion of seismic sections. One reason for this

discrepancy is that rocks often exhibit anisotropies of up to 10 percent.

The easiest kind of anisotropy to model is that which discrimi-
nates in azimuth alone but which does not differentiate between angles in
a horizontal plane. It is probable that most geological materials exhibit
either this kind of anisotropy, called hexagonal in Auld's text, or are

isotropic.

Christoffel equations

The frequency domain propagation equations for elastic waves in
homogeneous materials are called the Christoffel equations of medium.
They are expressed in terms of the wave-number vector (kx,ky,kz)

pointing in the direction of propagation, the particle displacements
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(uX,uy,uz), the stiffness matrix coefficients Cij (i, = 1,2,...,6),
and the material's density p. Since our system is hexagonal it is
rotationally symmetric about any vertical axis. It follows that we can,

without loss of generality, set ky = 0. The Christoffel equations are

then
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with the hexagonal constraint that C66 = 1/2(c11 + c33).

If the Christoffel matrix is nonsingular, then the unique
solution of the system of equations is the null-vector. A non-trivial
solution is obtained only when the determinant of the matrix vanishes,
so we are led to consider the eigenvalues and vectors of the matrix. The
equations for the eigenvalues will be the dispersion relations for the
propagating wavefields. There will be three such eigenmodes - in an
elastic medium these correspond to a P-wave and two S-waves. In the
hexagonally symmetric medium we are studying, the eigenmodes are called

pseudo-P, pseudo-S, and SH. Defining auxiliary variables A and B
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A = 5 [(cll - C44)kx + (c44 + c33)kz]
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B = 2 —\/ [(C11 C44)kx + (C44 c33)kz] + 4(c13 + c44) kxkz

these equations are
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The square roots in these equations are a nuisance for computational
purposes. They will disappear if the stiffness tensor components satisfy

an additional constraint, changing the dispersion relations to

pwz = cllki + c33k§ Pseudo-P
pr - c44ki L c44k§ Pseudo-S
pwz = C66ki + c44ki SH

13 = "¢y + (c11 - c44)(c33 - c44) Constraint

There are three eigenvectors corresponding to these three eigenmodes.
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where the constant C 1is defined by

Implementation

The time domain analogue of the pseudo-P dispersion relation is
a wave equation which governs the diffraction of waves much like the P
waves observed in isotropic materials. The partial differential equation
is
2

2
Dpg = VDt + V34D, 0
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where Vi is the velocity of sound traveling in a horizontal direction
and Vi is the velocity when the wave travels vertically. These two
velocities are functions of the stiffness coefficients and the material

density.

The anisotropic wave equation can be derived from the isotropic equation
by a simple change of variables corresponding to a simple stretch of

the z-axis. This means that if anisotropic effects are to be included
in a migration, then the only change in current procedures is a stretch
made after the migration is done. For a =z-variable medium and a
migration done with moveout velocities Vll(z)’ the post-migration

stretch is given by the equation

zZ Vv
z'! = J[ —éé-ds
0 V11

Rock physics

The reasonableness of the constraint on the stiffness matrix
that simplifies the Christoffel equations is discussed in a paper by Nur.
He derived it four years earlier by considering the closing of cracks in

rocks due to vertical loading.
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APPENDIX

Let the components of the strain tensor be defined so that eij
is the partial derivative of uj in the i-direction, where u is a
vector displacement. The indices i1 and j run over x, y, and z.
Similarly, denote the stress in the i-direction on the j-face of a

small element of material by Ij’ where I varies over X, Y, and 2Z.

The elements of the stiffness matrix are defined by and where

j ranges over x, y, and z.

Xx - %1% + cheyy + €132z + Cl4eyz + €15%2x + C16exy
Yy T C21%x + C22€yy + €23%22 + C24eyz + €25%2x + c26exy
Zz T %31%x + C3Zeyy + ©33%22 + C34eyz + ©35%2x + c36exy
T T CurCax T 2%y T 3% T %ualys T CusCax T C46txy
Zx T %51%x + c52eyy + ©53%22 + C54eyz + ©55%2x + C56exy
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