A TECHNIQUE FOR COMPUTING INTERVAL VELOCITIES
FROM COMMON MIDPOINT GATHERS

S. M. Deregowski

Introduction

In an article entitled ''Snell Waves'" (SEP-15), Jon Claerbout
showed that if a linear moveout of p sec/m were applied to a common
midpoint gather, then any pair of horizontal tangencies would yield

an estimate of the interval velocity according to

2 _ 1
p(m + p)

where m 1is the slope of the line joining tangent points (Figure 1).

The technique suggested here picks such tangent points and then
uses them to construct an interval velocity model by means of a least
square fit for the slope m. The tangency picking method has the
advantages of being relatively fast and of not requiring that any assump-
tions be made about an initial velocity model. Unlike the inherently
longer and more sophisticated wave equation techniques suggested by
Gonzalez (SEP-15), the tangency picking method used here is non-linear.
The non-linearity, however, lies in the property that the respomnse is
amplitude~independent: so that weak events can score equally with strong

ones.

Discussion

The method starts with a common midpoint gather and applies a scan
of linear moveouts. For each value of linear moveout p, the gather

will typically have the appearance of Figure 2 with horizontal tangencies
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FIGURE 1.--Basic technique for interval velocity estimation from
a linearly moved out common midpoint gather.
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confused by the interaction of many events. (Figure 2 is actually a
common shot gather, but it will serve for purposes of illustration.)

The horizontal tangent points are now picked by means of a simple,
velocity- and amplitude-independent three-point operator, which trans-
forms the gather into the form shown in Figure 3. Here each isolated
peak corresponds to the position of horizontal tangent, and because of
the amplitude-independent non-linearity, tangent points corresponding

to "invisible" random noise have also been picked. The next stage is

to filter out these noise picks by introducing a weak amplitude
dependence and also demanding that any picks fall within a region of
coherent energy. After this stage the data takes the appearance of
Figure 4, where the noise terms have been filtered out. The picked
amplitudes have also been generally readjusted, and they now depend

not only on tangency but also upon signal coherency. Within any
particular time-gate, the high offset strong amplitude peaks can

be associated reasonably safely with primary events (high velocities).
The magnitude of each peak lies between zero and unity and itself corres-
ponds to a product of three components, each of which scores between zero
and unity. These are the goodness of tangency (shown in Figure 3)
together with the data coherency and data strength. The idealized data
strength function would take a value of unity everywhere the data was
non-zero, and would become zero only when the signal strength fell to
zero. In our case, however, the threshold is set to a fixed (small)
fraction of some measure of the mean data amplitude. Figure 5 shows the
form taken by the product of the data strength/data coherency functions.
The "coherency" filtered tangencies shown in Figure 4 were obtained by

forming the corresponding product with the raw tangencies (Figure 3).

The interval velocities are now found, in principle, by selecting
the primary events in Figure 4 and joining them with straight lines,

finding the slopes m, and applying the formula

2 1

V. T p(m + p)

where p 1s the linear moveout applied to the original data. The procedure

is then repeated for different linear moveouts and the results averaged
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FIGURE 3.
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FIGURE 4.--Goodness of tangency after coherency filtering.
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FIGURE 5.--Data coherency (incorporating data strength).
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to provide the final set of interval velocities at that particular
midpoint. If this method is semi-automated, displays will be required
to help identify miss-picks. One possibility is to convert the interval
velocity model, defined as a function of midpoint, into a pseudo-seismic
41 - v/

(Vi+1 + Vi)]' This also holds for the velocities obtained as a function

section for "eye-balling" and possible editing using [Yi = (Vi

of linear moveout.

The actual method for finding interval velocities so far has been
the performance of a weighted least squares fit for the slope m over
various time gates. In this method, all the energy above a specified
threshold falling with a specified time-gate is picked from the "filtered"
goodness of tangency (Figure 4) to provide triplets of the form

(t'i’fi’ai)’ where

t'.

Z two-way traveltime (with linear moveout)

a3}
It

offset; a; = amplitude of pick

A weighted least square fit is now performed with the weight set
proportional to the square of the product of amplitude and offset. The
square of the offset in used in the definition for the weight in order to
shift emphasis to picks associated with primary rather than multiple
events. The selection of time-gates for the least square filtering
procedure can itself be carried out automatically via the data coherency
(Figure 4), where each localized dark patch defines a cluster of tangency
points, and the least square procedure simply fits straight lines

between such clusters. A more sophisticated method might use full
inversion theory applied to a forward model that predicts the positions
of primary peaks and multiples from an interval velocity model with a
specified number of intervals. (This number of intervals would then be

equated with the number of clusters.) But this has not been attempted.

Algorithms and equations

The algorithms employed will now be described in detail and
illustrated by means of the synthetic example shown in Figure 6, which

corresponds to three diffractor points within a constant velocity medium



FIGURE 6.--Synthetic

example:

v = 2500 m/sec;

p = 0.000125.
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(2500 m/sec) and with a linear moveout of 1.25 X lO_4 sec/m. Figure 7
shows the same data but scaled up five hundredféld. This gives a better
impression of what is actually seen by the amplitude-independent algorithm.

We compute the goodness of horizontal tangency according to

G(i,3) = - T, T, 3+ + T(i,i-1)]

[12(1,9) + T2(2,35+1) J[T2(4,5-1) + T2(1,§)] + Ate>

where T(i,j) represents the amplitude of an event at sample i of
trace j, and

se? = [T(1,j-1) - T(1,1) 3% + [T¢,5) - T35+ 1% + [T@,5-1) -

T(1,5+1) 1*

whilst A 1is an adjustable scalar parameter (typically, 200-500).

The above measure is seen to compare any given point T(i,j) on the
i~th horizon with its two neighbors T(i,j+l) and T(i,j-1l). As
there is no mixing between horizons, we will drop the sample index 1.

The critical term in the above expression is found in the numerator:

T (T + Ty )

This term can be thought of as '"twice the magnitude of a given sample
times the average value of its two neighbors,'" and is the basic measure
of tangency used. It can also be interpreted as the dot (scalar)
product between the pair of two-dimensional vectors:

(T

T, . (T, T,
FERSY ( 1 J)

in which case the square root term in the denominator

2 2 2 2
T, + T, T, + T,
\/( i J+l)( j-1 J)

is seen to be simply a normalization term designed so that the result
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FIGURE 7.--Synthetic example scaled up (x 500).
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becomes equivalent to the cosine of the angle between the vectors.

Consequently, the maximum score for

T.(T. ., +T. ;)
G, = J( j+l j-1
J \/’ 2 .2 2 2 2
T, + T, T, + T,) + AZe
( 3 J+1)(J—1 J)
is unity and occurs when T, =T, =T - that is, at a point of

j-1 j j+l
horizontal tangency.

The M-term simply acts to reduce the score when Tj-l’ Tj, Tj+l
differ from each other, and naturally, the greater the value of A the
greater the reduction. Figure 8 was computed with A = 500 whilst

Figure 9 used A = 50. The square root term in the definition of Gj

might be regarded as a nuisance. If we replace Tj by Tj—l in the
first bracket and Tj by Tj+1 in the second, we obtain
I L TS s S
Gy = 73 2 2
(Tj+1 + Tj_l) + Ale

which yields results virtually indistinguishable from those for the

previous definition.

We will now move on to the definition of data coherency.
The first step is to define a reference trace S by stacking the

linearly moved out gather:

S(i) = Z:T(i,j) R i = sample number; j = trace number

J

and then computing the correlation factor over short windows of
length 22 + 1 samples:

i+8

L ST, (1)
k=i-% J

VEIsw PTiz 01

YA, =
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FIGURE 8.--Raw goodness of tangency (A = 500).
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FIGURE 9.--Raw goodness of tangency (A = 50).
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The above is once more seen to be the direct correspondent of the cosine
of the angle between two vectors, as defined by the vector dot product.
In the case of coherency function, the adjustable parameter is the
window length £. Figure 10 shows the coherency obtained using £ = 10,
whilst Figure 11 was produced with & = 5. These plots actually show
Y(i,j) defined by

v, = Yy, v, >0

Finally, we introduce a weak amplitude dependence to the coherency

function by defining the data strength function

|T(,9) |
lT(i,j)] + 1. (maximum data amplitude)

k(1,3)

to define (Figure 12):

Y(i,3) k(i,3) . v(i,3)

This yields the third adjustable parameter yu. The direct product of
the raw picks and coherency function is now formed to provide the

final picks for the least squares fitting (Figure 13).

The coherency function ¥(i,j) has another important role to
play: the definition of windows for the least squares fit. For this
purpose, we first perform a horizontal stack of 7VY(i,j) biased to
large values. Ideally, the result of such a stack would correspond to a

set of box functions with the peak values of the order of unity:
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FIGURE 11.--Raw coherency function (2 = 5).
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FIGURE 12.--Y(i,j): coherency function (& = 5) incorporating
data strength (p = 107¢),
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FIGURE 13,-- Coherency filtered goodness of tangency, i.e.
incorporating data strength  and coherency (2 =5, p =102,
A = 200, dx = 100m, p = .000125 sec/m).
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The onset of each box function defines the start of a new window, and
its termination the end of a previous one. The picked values falling
within each box function are said to define a cluster. A confidence
weight on the velocity defined by fitting between clusters could now be
set according to the maximum weights within the two clusters - that is,
by the minimum of the two maxima. But prior to the least square fit,
the maximum weight within each cluster is reset to be unity in order to

ensure a meaningful slope.

The "windowing trace" could be defined by simply setting

but a more robust definition is
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In the above, we are simply performing a weighted average with the

weight defined by the square of the sample amplitude.

In conclusion, the above technique describes a possible method
for obtaining interval velocities. It is a method, however, that has

yet to be proven (or otherwise!) by application to real datasets.



“Keep in mind that, like everyone else, I only use ten percent of my brain.”



