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Abstract

The retarded Snell midpoint coordinate frame enables us to inter-
pret velocity analysis from the wave equation point of view. The imaging
conditions applied to the coordinate transformation equations provide an
exact way of estimating velocities in CMP gathers. Transforming the
wave equation from physical variables to the new variables and putting
the data into the new reference coordinates permits a migration,
collapsing the energy toward the stationary part of skewed hyperboloids,
where we can measure velocities as functions of event coordinates.
Alternatively, we can project the data onto the t'-T plane, where the
energy will focus almost independently of the migration velocity and
departures of the focused events from the expected coordinates give the
true material velocities. This plane can be more appropriate for seafloor
multiple removal. Both synthetic and real data examples of the first
procedure are shown for the exact and 15-degree frequency-wavenumber

domain operators.

Introduction

Seismic velocity determination is an iterative process. It may not
seem to be iterative because the convergence can be so rapid that a satis-
factory answer may be found after only one iteration. TFTor example, in
the industrial process called "brute stack'" or "constant velocity stack,"”
the assumption is made that the velocity is constant, thereby justifying

the use of hyperbolic summation; thus, a non-constant, stratified velocity
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is determined. Obviously, the ray paths are non-hyperbolic. So, in
principle, further iterations of some kind should be done. In practice,
it is not very clear how much we are missing if we fail to do so. We
are unsatisfied with brute stack as a definition of velocity spectra

and plan to seek a better definition.

Another problem in industrial velocity analysis is the matter
that gates in time and midpoint are chosen somewhat arbitrarily. When
we look at the low signal level seismic sections for weak events, we
look at the section from various angles and at various distances, thereby
selecting various gates. We need to try to display velocity information
in seismic section form. It is not completely clear how this should be
done, but we should probably avoid highly non-linear operations like
semblance and keep the process linear on the data field. An article in
SEP-15 ('Snell Waves," by Jon F. Claerbout, pp. 57-71) shows that it
is possible for an observer to read interval velocity directly from

the skewed CMP gathers, so non-linear methods like semblance are not

necessary.

Still another objective of velocity analysis is to define
stacking methods that not only emphasize some particular velocity but
actually suppress other velocities. Consider the following "conventional'

process, which we will call deH20—1:

1) Stack at water velocity to get a good estimate of multiples.
2) Create a synthetic gather of multiples.
3) Subtract the synthetic multiples from the original data.

4) Stack at sediment velocity.

An alternative process could be defined with wave equations to

achieve approximately the same objective. Call this deH20—2:

1) Downward-continue to the focus predicted for water velocity.
2) Mute out zero offset and its vicinity.

3) Upward-continue at water velocity.

4) Downward-continue at sediment velocity.

5) Select zero offset.
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How does the conventional process deal with angle dependence
of reflection coefficient? Probably by automatic gain control. How
does the wave equation deal with it? By definition of the size of the
vicinity of the focus to be muted. This also takes care of the changes
of wavelet with angles, which deH20—1 can attack with time variable
deconvolution. Factors that cause angle-dependent wavelets include
elastic~propagation phenomena and shooting-recording arrays, to say
nothing about lateral variations in the seafloor itself. The process
deH20—1 must somehow get these sorted out so that the subtraction in
step (3) of the process works properly. The process deH20—2 can bury
most of such embarrassments by muting a larger zone about the water

focus. It avoids the need for accurate multiple modeling.

Of course, neither of the deHzO processes is very effective
on peg-leg multiples, which are usually a more serious practical problem.
What these simple processes are good for is to illustrate that it is time
to have a good look at stacking and velocity spectra from a wave equation
point of view. Not only that, but the history of migration via hyperbola
summation versus migration via wave equation shows us that the wave
equation methods have important advantages in that effects of aliasing,
truncation, and resolving power can be explicitly analyzed and dealt with
in a knowledgeable way. Wide angle problems that wave equation migration
methods suffered in earlier years have been completely resolved by either
the "phase shift method" or the "Muir recurrance method." Computational

cost problems do not appear to be relevant in this age of array processors.

Advantages of retarded Snell midpoint coordinates

We are familiar with the idea that wave equation migration of
horizontal beds is a rather trivial matter. As long as the output is taken
to be a migrated time section instead of a migrated depth section, the
output for a horizontal bed is completely correct, independent of an
erroneous migration velocity. Turning our attention to a linearly
moved out (LMO) common midpoint gather, we note that the flat part at the
top of each skewed hyperboloid will not be moving as we upward- and
downward-continue in a retarded Snell coordinate system. This means that

this portion of the hyperbola is correctly upward- and downward-continued
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despite any velocity errors. As we have seen in SEP-15 (''Snell Waves")
the location of the skewed hyperboloid tops in fact gives us seismic
velocity directly. The role of the migration velocity v(z) is to
focus the energy at the tops. The advantages of the LMO may be
summarized as: (1) velocity estimates are insensitive to ¢ priori
velocity information; and (2) for off-end recording, the LMO achieves

a certain degree of spatial anti-aliasing.

There is not quite as much magic in the LMO as we first thought.
A problem is this: although it is true that the hyperboloid top does
not move, it is not true that the center of the energy of the focus does
not move. This became quite evident in examples in which the energy
distribution in the skewed hyperboloid was quite asymmetrical. The
circumstance can be visualized if you were to have only one side from
the top of the skewed hyperbola. (Examples are shown in the next
section.) Best focus of the hyperboloid is still obtained at its top,
but the center of energy moves laterally in some rough proportion to
the average dip, the downward-continuation velocity, and the depth.
So the center of energy of a focus is not so independent of the a priori
velocity as is the hyperboloid top. As a result of this, we have come
to view velocity analysis as a study not just in the offset-time (h,t')
plane, as suggested in SEP-15 ("Short Review of Retarded Snell Midpoint
Coordinates," by Jon F. Claerbout, pp. 81-87), or in the time-depth
(t',z) plane, as suggested in SEP-1 (Doherty and Claerbout, pp. 160-178),
but as some analysis in the (h,t',z) volume. Since we cannot make a
satisfactory display of the volume, our next plan is to display a
surface in (t',z) [or (t',T) where T is a "migration depth"] for

that value of h which is determined for the a priorimigration velocity.

Theory

The transformation from physical variables (shot-geophone) to
the retarded Snell midpoint coordinates is given by (Claerbout, SEP-15,
p. 81):

cos O .

z
t' = t - p{g-s) + 2.jr ——= dz (ia)
0

v
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T = 2] L8 0 4, (14)
v
0
where (s,g,z,t) = (shot,geophone,depth,time) are the recording

coordinates, and (h,y,T,t') = (half offset,midpoint,traveltime depth,

retarded time) are the new reference coordinates.

Substituting the imaging conditions s = g, t' = T vyields an
exact expression for the interval velocity estimation (Claerbout and

Lynn, SEP-14, pp. 73-80):

2 1
v = 1 dt’ (2)

p(p t S @

It can be particularly useful to downward-continue the data
to enhance the signal-to-noise ratio, and consequently improve the
velocity estimation. This is easily achieved in the frequency-wavenumber
(f-k) domain: call P(kh,T=0,w) the data transformed into f-k space,

then use a modified dispersion relation for the telescope equation:

J[T
7 k_dt
0 T

P(kh,T,w) = P(kh,T=0,w) e (3)

where kT is given by

k 2
T .y __.pv_ H - 1 - 2pvH + H ()
w 22 22
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Next we substitute the imaging conditions t' = 1, to get the

migrated time gather:

T
- 7/[ (kT—w)dT
P(h,Tt,t'=7) = ff P(kh,'r=0,w) e 0

1k h
ekh dk, dw (6)

The 15-degree approximation is found by expanding the square
root from Equation (4) and retaining the terms up to the second degree

in H, giving

k >
2.2.2 (7
pvY)

|

[

2(1 -

For time domain computations, this equation takes the form,

2
v

8(1 -p

2 2.2 Phh (8)
v)

If we look for a projection of the data in the t'-1 plane
rather than the usual h-T plane, then we need to decide which value
of h to display using Equations (la) and (lc). Substituting the

stopping condition s = g, we get the new condition,

=a |

]
N =

[E
N
N

fa¥

o+

(9)
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Using this equation we get from Equation (3):

T
k_dt

- @ ¢ o T
P(h=h,t,t') = /f P(kh,’t=0,w) e

ik, h - Zwt!
e kh dkh dw (10)

This new plane will have the events aligned along the 45-degree
slope, if the migration velocity is correct, and will focus the events

somewhere else depending on their velocity.

To get a relationship to estimate velocity, we can use
Equation (2). Remember that all events displayed for a given T have
a common offset; then we can substitute for both the downward continu-
ation velocity (vm) and the true velocity (Ve)' After eliminating

h and solving for v,» Wwe get

v = (1)

Examples

Figures 1, 2 and 3 show synthetic examples for the (h,t') and
(h,t) planes computed in the frequency-wavenumber domain. Figure 4
is the field data gather for the test with real data: the results are
shown in Figures 5-10. Figures 5 and 6 show the data resampled at
0.008 sec with an LMO correction applied. These figures also display
the reference grid for velocity estimations. TFigures 7-10 show the

migrated results for the exact and 15-degree approximation operators
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for two different values of p. The data of these figures was low-pass
filtered to remove high frequency noise. Details are on the figure
captions.

Figure 11 shows a synthetic gather without seafloor multiples
as an example of the first three steps of the deH20—2 procedure.

Finally, Figures 12 to 15 show examples in the (t',T)-plane for p=0.
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FIGURE l.--Impulse response for the diffraction and migration
transfer functions: (a) is the conventional diffraction with p = 0,
while (b) has a ray parameter p = 1/5000 sec/m, thus getting a
skewed hyperbola; (c) and (d) are the impulse response of the downward-
continuation operator.
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FIGURE 2.--Constant velocity example: (a) is the diffracted data
for a velocity of 1500 m/sec; (b) is the conventional collapse using the
wave equation in (h,t)-coordinates. (c) is the LMO-corrected gather with
a value of p =

= 1/2500 sec/m. (d) is the exact equation result, while
(e) is the downward-continuation using the 15-degree equation.

We see
the 15-degree equation gave reasonable results, with minor trouble due to

the steep slope to the left of the tops of the hyperboloids in the gather.
With the aid of (f), we can measure the interval velocities directly
comparing the slopes between events in the migrated gathers.
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FIGURE 3.--Variable velocity case: (a) is the synthetic gather;
(b) is a 15-degree migration; and (c) is an exact migration for p = 0.
The first event has a wider range of spatial ky, frequencies, giving a
sharper focus with respect to the other two. (d) has an LMO-correction,
using p = 1/5000 sec/m. (e) and (f) are the migrations using the correct
velocities for the 15~degree and exact equations respectively. The energy
in the lower right part of (e) corresponds to the very steep slope of the
first hyperbola,and the tail at the right of the second focused event is
energy that was not correctly handled by the 15-degree equation but
presenting no problem to the exact equation. For the third event, the

LMO-correction has reduced the steep slopes, so we get a better though (cont.)
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(Figure 3 cont.) broadened focus because of this reduction. (g,h,i) are
similar to (d,e,f) respectively, but for a Value p = 1/3333 sec/m. Here
the 15-degree equation handled the third hyperbola remarkably well, while
the exact operator had trouble with the now wider flat part of the skewed
hyperboloid where the exact operator is null. (j) and (k) are the

reference grids for velocity estimation.
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FIGURE 4.--Common midpoint gather for field data examples.

data is a 48-trace gather sampled at 0.004
50 m with in-line offset of 273 m.
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FIGURE 7.--Migration with 90-degree equation for the data of
Figure 5. The migration velocity is 1450 sec/m with p = 1/7700 sec/m.
The zero-offset trace corresponds to the trace number 27 approximately,
and the first trace of the gather starts at trace number 33. The 64
traces are displayed to show the effect of wrap-around. The gather was
padded with zeros to double its size before migration. We can easily
identify all the seafloor multiples aligned along the water velocity line,
also the multiple refractions from the event at 0.75 (trace 49) can be
followed with its associated phase reversals clearly visible; another
refraction at 0.55 sec (trace 37) can be followed with its corresponding
multiples. The high frequency noise between traces 40-64 (0.62 to 0.95 sec)
is associated with the seafloor reflection. ©Note also that the tops of the
hyperboloids are in the expected positions; however, the energy is not
concentrated at the top due to the asymmetry of the input data and migration
process. This can introduce a biasing effect in the velocity estimates.
Also note that it is not easy to recognize events for velocities not close
to the migration velocity, while a stratified velocity migration will
not separate the seafloor multiples so nicely. This makes it attractive
to work instead in the (t',t)-space.
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now wider asymmetrical focus associated with the seafloor multiples because
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FIGURE 12.--Constant velocity example illustrating the results
of displaying the (t',T)-plane. The input data is from Figure 3a.
(a) shows the result using the exact velocity (1500 m/sec), with the
events aligned along the t'=T line; note the 90-degree phase shift
associated with the two-dimensional focusing as mentioned in SEP-1.
(b) was downward-continued for v = 1250 m/sec; now that the events are
above the t' = slope, we can use Equation (11) to find the material
velocity from the new slope of the events. (c) is an example using a
faster velocity v = 2000 m/sec, thus getting the events aligned below
the t'=T line.
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FIGURE 13.~--Variable velocity example. The input data is from
Figure 4(a). (a) is the exact result using the correct velocities,
with the events aligned along the t'=T 1line. (b) is the result using
the velocity for the first event, so its focus has the expected 45-degree
slope, while the other two events with higher velocity have smaller slopes.
Note the downward-continuation steps were insufficient to at all focus the
third event. In (c) we used the velocity for the second event; note that
the slope between the origin and the first event is greater than 45 degrees.
(d) was downward-continued using the velocity for the third event, so now
the slope between the second and third events is 45 degrees exactly. This
figure emphasizes the fact that in the (t',T)-plane we get focusing of
the events independently of the downward-continuation velocity, and
departures from the expected coordinates give the information necessary
to find the correct velocity. Also note that if we measure the slopes
with respect to the origin to an event we get the RMS velocity for that
event, and if we measure the velocity between two events, we get the
RMS velocity between those events.
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FIGURE 14.--This figure shows the downward-continuation of
the data in Figure 4, displaying the zero-offset traces at each step.
The velocity for the downward-continuation was 1450 m/sec. We expect
the sea bottom primary and its multiples to be aligned along the t=T
line. The energy of the upper right corner is due to the effects of
wraparound and cable truncation. The event at t = 0.55 sec, T = 1.0 sec
is the sea bottom refraction; its associated peglegs can be distin-
guished aligned with a 45-degree slope below this event.
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FIGURE 15.--This figure shows the downward-continuation of the
data in Figure 4, again displaying the zero-offset trace at each step and
using a downward-continuation velocity of 5500 m/sec. Now the sea
bottom primary and its associated multiples come to focus very early.

For shallow events the downward-continuation steps were too long to get
a good focusing. For this high velocity, the effects of wraparound

and cable truncation are very severe or can be seen from all the
diffracted energy in the grid.



