TWO TYPES OF MIGRATED TIME SECTIONS
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Introduction

The double square root equation (see Claerbout, SEP-15, pp. 73-80)
represents the complete operator to downward continue shots and receivers
into the earth. 1In addition to collapsing diffraction hyperbolae and
migrating dipping energy in the midpoint dimension, the double square root
equation also performs the normal moveout correction in the offset
dimension during the downward continuation (see Clayton, SEP-14, p. 29).
Depending on the purpose of the processing (imaging, multiple suppression,
etc.) it may be advantageous to separate the migration from the moveout
correction. In fact, the standard procedure in seismic data processing is to
first perform the normal moveout correction and stack the data into zero

offset and then migrate the stacked section.

An alternative type of stack is a common midpoint (ecmp) slant stack
where the stacking is done along a linear moveout trajectory (see Ottolini,
SEP-15, pp 97-108). 1In this type of stack, a hyperbolic event will stack
into zero offset at some time t' which is dependent upon the slope of the
stacking trajectory. t' is always less than or equal to the zero offset
traveltime (or t' for a zero slope slant stack) and their difference is
defined as the slant moveout time. In migrating cmp slant stacks, it may or
may not be desirable to correct for the slant moveout. Whether or not the
moveout time is corrected for in the migrated time section depends upon how
the depth to time conversion is defined. For moveout corrected time sections
the vertical traveltime to depth transformation is used in the double square

root equation

z
dz
T = ZS 7 (2) @D)
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To leave the moveout time unchanged, the following time to depth conversion

is used in the double square root equation

z 2 2 1/2
- [1 -p"V(2)] dz
T = 2/0 3 (2)

where p 1is the slope of the linear moveout summation trajectory. Both types
of time sections are useful in various applications and their differences

are summarized in the following table

moveout-corrected not moveout-corrected

flat events will move in time flat events do not move in time
velocity sensitive velocity insensitive

good for velocity estimation good for multiple suppression
image is independent of p image is dependent on p

velocity estimation from linearly
moved-out cmp gathers

There exists a similar situation with cmp (hyperbolic) stacks. If the
energy is stacked into some non-zero offset instead of zero offset, there
would be some residual moveout on the stacked sections. We would now have
the same choices as above, which are to correct for the moveout during the
migration or to leave it unchanged. The remainder of this paper will go

into detail on the migrated time sections for c¢mp slant stacks.

Moveout-corrected time sections

We will first consider the transformation given in Equation (1).
Quickly summarizing Claerbout's derivations in SEP-15 (pp. 92-95), we have

from the double square root equation and for flat beds

P = ﬂ(l—ﬂz)l/zP
z v

(3)

where H = vkh/(Zw) and kh is the offset wavenumber. 1In the slant frame,

t' = t + 2ph which implies
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gy = e - 20

For a slant stack, k = 0, and so Equation (3) becomes

h'

o =27w! 22
PZ = - (1 -pv

)1/2 P

(4)

To simplify the following concepts, let us assume a constant velocity.
We will generalize to a stratified medium later. Upon choosing a slant angle
p, a hyperbolic event from a flat bed at depth =z will be stacked into a
time t' given by

2z(1 - pzvz)l/2

v

t' (5)
where v 1is the correct medium velocity. Now consider an entire p-stack
which will consist of one flat event at t'. Using Equation (1) with our

estimate of the velocity ¥ to rescale the depth axis, Equation (4) becomes

Pa = —tw' (1 - pzx?z)l/2 P

A - - fa N -
where v is the migration velocity and T = 2z/v. Inverse Fourier trans-

forming with respect to w yields

1/2 P

Pr = (1 - pzsz) e (6)
Equation (6) is simply a shifting equation with the solution

P o= PLt' + (1 - p2D) /% 1
Hence a point situated at tO' and T = 0 will be shifted to

. £’

to= (1 - %172 7

after migration as shown in Figure 1.
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FIGURE 1.

Combining Equations (5) and (7) we obtain the relation between the post-

migration T (T) and the correct T (7):

R - 2.9 1/2
T = - - P T (8)
2.2
1 -pv

Thus, if v = v, then T T and is independent of p. Otherwise, T will

vary as a function of p.

Consider an example where the true media velocity is 8000 ft/sec down
to a reflector at 2000 feet. Prior to migration, a cmp p-gather would look
like Figure 2a. After migrating all of the cmp slant stacks with Equation
(6) we regroup them back into cmp p-gathers shown in Figure 2b. The
migration velocity ¥ is shown on the right. For v = v = 8000 ft/sec, the
resulting p-gather is independent of p as it should be. For Vv < v, the
p-gathers appear to be under-migrated with the larger p-values not being

pushed down far enough. Similarly, for v > v, the larger p-values are

overmigrated. ©Note that the effect of having v > v is much more pronounced

than having v < v.
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It is a simple matter to estimate v from any of the migrated

p-gathers. Solving Equation (8) for wv:

~ D 1/2
1 22 {T)
= = {1-(1- - 9
v . [ ( pvT) p ] (9
T can be measured from the original migrated slant stack for p = 0. T is

the migrated time for some particular value of p wusing a migration velocity

of ¥V as shown in Figure 2b.

We can easily generalize this result to stratified media. 1In a

stratified medium, an event at a depth =z will stack into a time t' given

by

z 22 1/2
£' o= 2 / [1 - P vazgj dz (10)
0

After migration with a velocity of v, this event will be located at a depth

A

z given by [see Claerbout, SEP-15, p. 94, Equation (18)]



176

~

z 1/2
0 v(z)
Letting
z
2 = 9 /( dz
0 v(z)
Equation (11) becomes
J/'% 1/2
t' = [1 - ()] dt (12)
0

Using Equation (1) to

T
t' =

and equating t'

T

Assume that V = v up to the

1/2

/Otl—p V(D]

j-1st reflector at Tj

rewrite (10) as

/ [1 - p2vl(n) ]2
0

with Equation (12) we obtain

”~

T
/ [1 - 22012 ar
0

-1 and we want the

velocity vj between Tj—l and Tj. Also assuming that vj is constant
within the interval, we get

(1 - vajZ)l/Z A (1 - p?'\/}jz)l/2 AT (13)
where AT =T - Tj—l and AT =T - Tj 1 Since the migration velocity is
correct down to Tj—l’ %j—l is equal to Tj—l and is independent of p.
Solving Equation (13) for Vj.

~712 1/2
_ 1 2~ 2 AT)
vy = p[l (L -p ) AT] (14)
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Again AT can be measured directly from the pre-migrated slant stack for
p = 0. AT 1is the time difference between the migrated j-lst reflector and

the j-th reflector measured at some non-zero value of p.

Once the correct velocity is found a final migrated section can be made
by simply superimposing all of the individually migrated cmp slant stacks,

thus acquiring a higher signal to noise ratio.

Moveout-uncorrected time sections

Let us now consider a migrated time section using Equation (2) as

the depth to time conversion. Rewriting Equation (4) using

at _ 201 - pAE(1t?

dz v(z)

from Equation (2) we obtain

P =P (15)

which is a simple time shift independent of v as we downward continue in T.

If AT dis set equal to At', then the energy migrates along a 45-degree line

in (t',T) space as shown in Figure 1l and the timing relationship between flat
events remains unchanged. Note that if we worked in a retarded time frame

defined by

z 2 2 1/2
tl = t + 2/ [1 - p Vv (Z)] dz
0 v(z)

then Equation (15) becomes
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which implies that the flat events remain stationary in time during the
downward continuation. Thus, flat events on a pre~migrated cmp p-gather
will remain unchanged on the post-migrated p-gather (i.e., after resorting
the migrated p-stacks back into p-gathers) (see Figure 2a). Velocity
estimation can be performed on the p-~gathers using the procedure described

by Claerbout in SEP-15 (pp. 91-92). It really does not make any difference

in the final result if we use a retarded frame or not. Using a retarded frame

just simplifies the algorithm.

Perhaps the most useful application of this type of time section is
in the suppression of multiples where it is critical to maintain correct
timing relationships between events (see Morley and Claerbout, SEP-15).
Another application is in measuring rms and interval velocities from cmp
gathers using the tangency method described by Claerbout (SEP-14, pp. 13-16;
SEP-15, pp. 61-66). Claerbout showed that the velocity between two events

(Figure 3) is given by

v o= A (16)

where f 1is offset and dt/df is measured between the tangent points of the
line t' =t + pf with the two events. In a linearly moved-out coordinate
system, as in Figure 3b, the tangency points become the tops of the skewed

hyperbolae, and the resulting velocity estimation is given by

2 1
dt')

= (17)
P(P + T

v

Migrating the linearly moved-out cmp gathers will focus the
energy at the tops, thereby increasing the reliability of the velocity
estimations. The migration equation is derived from Equation (4). However,

since we are not downward continuing slant stacks, k is not set equal

h'
to zero in Equation (4) and the downward continuation operator is

. \'2 ' 2 1/2
P = =27 [1 _ ( *h _ pv) ] P (18)

z v 2w
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Using the depth to time conversion in Equation (2), this becomes:

vk ) 2~1/2
- v

- 2w’
= St
PT = ) 55 P (19)
1-pvw
The top of the skewed hyperbola is where kh' = 0 and in this case Equation
(19) becomes
=—. '
P TP (20)

which again is a simple shift in t independent of velocity as we step down
in 1t1. Physically, it does not make sense to downward continue a cmp gather
by itself. However, if the medium is vertically stratified we can consider
the gather to be a common shot gather which is valid to downward continue. It
appears that the main advantage of using the migrated gathers is to estimate
velocity is on noisy records where the hyperbola tops cannot be picked

reliably.
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In summary, we have two different choices to make in creating migrated
time sections from data in a slant frame. If we want to make absolutely certain
that timing relations for flat events are not disturbed, then Equation (2)
is the proper depth to time conversion. If we want to create several migrations
of cmp p-stacks and have identical images for later superposition, then

Equation (1) is the proper conversion.



