IMPEDANCE, REFLECTANCE, AND TRANSFERENCE FUNCTIONS

Jon F. Claerbout

In describing stable physical processes rarely is much attention
given to the stability of the modeling equations. The common feeling is
that since the physical process is stable, so must be any correct and reason-
ably accurate modeling equations. So often is this true that concern with
stability, like concern with existence proofs, is frequently regarded as

highly academic.

Quite the opposite circumstance applies in geophysical data processing
where we are involved with the Zwnverse of physical modeling. Modeling, the
way nature does it, is extrapolating forward in time. Extracting information
about the earth's interior from surface measurements is inverse modeling.

Such extraction is really extrapolating information in depth. Nature does
boundary value problems in depth, not initial value problems, so we can consi-
der ourselves lucky when we are able to extrapolate downward. When a depth

extrapolation is unstable then we simply cannot determine the information we seek.
The instability may arise from either of the following two causes:

1) Mathematical equations may have a unique solution, but

there may be a ridiculous sensitivity to data accuracy.

2) Approximations which are reasonable and valid in the
frequency range of interest might violate causality

outside that range.

In any practical situation there is obviously a great need to know which of
the above two situations is applicable. Luckily in seismic imaging we are
usually in case (2). To regain stability the main requirement is that we
learn some stability analysis and use it. Of all the virtues a computational
algorithm can have - stability, accuracy, clarity, generality, speed,

modularity, etc. ~ the most important seems to be stability.
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Early chapters of my book, Fundamentals of Geophysical Data
Processing (FGDP), develop the basics of stability in time domain calculations.
These are causality, Z-transform analysis, and minimum phase. Additional
techniques stem from the mathematical properties of impedance, reflectance,
and transference functions, which will be more fully developed here. The
present development will be self-contained for frequency domain

calculations, but will rely heavily on FGDP for time domain causality ideas.

Review of impedance filters

Use Z-transform notation to define a filter R(Z), its input X(Z)

and output Y(Z). Then
Y(zZ) = R(Z) X(Z)

The filter R(Z) is said to be causal if the series representation of R(Z)
has no negative powers of Z. In other words, Ve is determined from present
and past values of X . The filter R(Z) 1is said to be minimum phase if
1/R(Z) has no negative powers of Z. This means that xt can be determined

from present and past values of ‘A by straightforward polynomial division in
X(Z) = =%

Given that R(Z) is already causal and minimum phase, it can addition-

ally be an impedance function if positive energy or work is represented by

0 < work force x velocit = voltage x current
= y

t t
1 - -
-2 g Goyy + 5%
= coef of z° of i(-%) Y(Z) + ?(%J X(Z)

1 21 _
= —-j[ Re (X YY) dw
2T 0

/Re (XRX) do = /iXRe (R) dw

e
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It therefore follows that Re[R(w)] > 0 for all real ® so that impedance
functions are also called causal positive real functions. It is shown in
FGDP, page 31, that every impedance function is minimum phase, though not
the other way around. Adding an impedance function to its Fourier conjugate
we get a purely positive function (no imaginary part) like a power spectrum,

say
=,,—1
R(zZ) + R(Z ") > 0 for real w

which is the basis for the statement that the impedance time function is omne

side of an autocorrelation function.

Rules for compounding impedance functions

One of the difficulties in applied geophysics is this: Results may
have physical utility only in a certain limited range of frequencies and
reasonable approximations may be made in that range. But if a spectrum or
impedance becomes negative outside the applicable range, say near the
Nyquist folding frequency, then the calculation (by Murphy's Law) will be
unstable and hence useless. Thus Muir's rules”for compounding impedance

functions deserve careful attention. Let R' denote a new impedance function

generated from old known impedance functions R, Rl’ or R2.
Muir's rules are:
il: Multiplication by positive scalar a R' = aRr
. . \J — ]'
i2: Inversion R = f{—
i3: Addition R = Rl + R2

Rules il and i3 self-evidently preserve causality and positivity of the real
part of the Fourier transform. Causality for Rule i2 was already mentioned
as having been developed in FGDP. The positivity of the real part for Rule
i2 follows by considering R at each frequency ®w to be the complex number
a+ 7b where a > 0. Then 1/(atlb) = (a—ib)/(a2+b2) also has a positive

real part.

*
personal communication
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Isomorphism with reflectance function C

Given any impedance function R, then the following equation defines

an associated reflectance function C

¢ - )

We will see that the reflectance function is also causal and that it is less

than unity in magnitude, say
lc|? = E(%) ciz) < 1

Causality follows because the numerator 1 - R is causal and the denominator
1 + R is positive real (since R 1is positive real), hence minimum phase.
That the magnitude of C 1is less than unity follows from noting that the
magnitude of the numerator is less than the magnitude of R and the magnitude
of the denominator is greater. Unlike the impedance function R(Z), the
reflectance function C(Z) is not necessarily minimum phase. An example

is R=1+12/2, C=-.52/(2 + Z/2). Equation (1) may be solved for R:

R = (2)

We may now inquire if C = causal and |C| < 1 alone will ensure that

R is an impedance function.

Multiply (2) on top and bottom by 1 + C

1-0+70
|1+C|2

(1 -CC) + (-C +0O)
positive

(real) + (imag)

Clearly the positive reality is ensured by [C| < 1. The causality follows
since the numerator of (2) is assumed causal and the denominator is causal with
positive real part (since 1 > tC]). In summary, then, Equation (2) will

reliably produce an impedance function from any apparent reflectivity function.



145

An obvious feature of reflectivity functions is that the product
of two of them (in the frequency domain) will produce another. Let two

reflectivity functions be denoted by B and C. Then a new reflectivity

function is C' = BC. The corresponding impedance function from (2) is
1 -R
wr - L-Bc _ ' PTYR
1 + BC 1 R
1+B I+ &

(1 +R) - B(l -R)
(1 +R) +B(1 -R)

(1 - B) + R(1 + B)
(1 + B) + R(1 B)

1-8
R
_1+s
1 -8
1+ 1R

So denoting R1 = (1-B)/(1+B) and R, = R we have another rule for impedance

2
functions

R, + R

1+ Rle

i4: R' =

When R, goes to infinity Rule i4 reduces to Rule i2.

We have just taken the reflectivity rule C' = Clcz into a rule in
the domain of the impedances. This is known as isomorphism. Let us now take
the first three impedance rules into the domain of the reflectivities.

In sequence they become:

C

cl: Cc' = %F{}EE- where ¢ is a number such that |c| <1

c2: C' = ~C
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-1 + C1 + C2 + 3C1C2

3+ C1 + C2 - ClCZ

c3: ¢' =

. v -
c4d: C C1C2

Rule cl follows by an algebraic process almost identical to that
which derived i4. Rule c¢2 states the obvious fact that the negative of a
reflectance is a reflectance. Rule ¢3 does not seem to be very useful and
Rule c4 states the obvious. Rules 1 and 3 are particularly self-evident in
the impedance domain, and Rules 2 and 4 are particularly self-evident in the

reflectance domain. In summary:

1: R' = aR a>o0
2: c' = ~C
. voo
3. R R1 + R2
. ' 3
4 C C1C2

After this excess of formalism the reader may welcome some examples, and

we shall have them.

Example: Causal integration and differentiation

Define a reflectivity function which is almost -1 with a unit

delay, say

C = -pZ where p=1-¢

1>>¢>0

Now look at half the associated impedance function

21 - pZ
= 2@ +on) [1+0z+ (027 + (p2)> + -]

= +pZ+(pZ)2+(pZ)3+"'

N
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Extracting the coefficients of zt we find the time response of the filter.
As € tends to zero this is the discrete step function (....0,0,0,%,1,1,1,-.-+)
Convolution with it approximates integration from minus infinity to time ¢t.
For small non-zero € this operation is called leaky integration. It is a
simple exercise to show that

1 eiwAt

R ® —4————— where Z =
-twAt + €

and 0 < g << p<<T

As multiplication by -Zw in the frequency domain is associated with
differentiation d/dt in the time domain, so is division by -Zw associated
with integration. Now the surprising thing is that people usually associate
the asymmetric operator (1,-1) with differentiation, but the inverse to

the causal integration operator, namely

-1 1 - pZ

R 2 1+ pz

2 - 4pZ + 4(pz)2 - 4(pZ)3 + ...

is completely causal, not at all asymmetric, and also represents differenti-
ation. That is to say, when the time sampling At tends to zero or, what

is the same thing, when the frequency is sufficiently far from the folding
frequency (where there is a pole), the operator R_1 represents differenti-
ation. In fact, in linear systems analysis this is often the preferred
discrete representation of differentiation. By analogy with the words
definite integral this operator may be called the definite derivative.

As we will see, the construction of higher order stable differential equations
must now be subject to the rules which we developed for combining impedance

functions.

Occasionally it will be necessary to have a negative real part for
the differentiation operator. This can be achieved by taking € negative
which means taking © > 1 and doing the infinite series expansion in powers
of Z—l, that is, anticausally instead of causally with positive powers of Z.
In either case the imaginary part will be -Zw but the real part has

opposite sign.
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Example: Waves crossing an interface

At any level within the earth we can think of the downgoing wave D
which we have initiated as an input signal, and the returned upcoming wave U
as the output of an earth filter. The ratio U/D is the earth filter.
Clearly the earth filter is causal and also some of the energy must escape
into the earth's interior so we must have |U| < |D|] at all frequencies.
Thus the earth's response should be a reflectance € = U/D. The reflectance
C vanishes beneath the deepest reflector but it is non-zero above, so it
is obviously a function of depth. FGDP, page 149, Equation (8-2-2), shows
how to extrapolate vertically propagating scalar plane waves across a flat

horizontal interface:

(1 +¢)
D below © ¢ 1 D

Here ¢ 1is a reflection coefficient so that |c| < 1. By manipulating

above

this equation we can find a procedure to get U/D below the interface from

U/D above (or vice versa). The ratio of the first equation to the second is

C _ (g) - U+ cD
below D below cU+D
- (U/D)above te
C(U/D)above + 1
- ¢+ CabOVe
1 +c Cabove

This can be seen to agree with Rule cl, so we can rest assured that
CbelOW has the correct properties of a reflectance. Rule cl can also be
thought of as Rule il, multiplying the impedance by the positive constant

(1 -c)/(1+c).

Example: Waves crossing a thin layer

The very next equation in FGDP shows how waves cross a layer of

unit traveltime thickness. It is
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1/2
D bottom 0 Z D

Forming the same ratio C = U/D we get

C
C = _t_OE
bottom Z

Now Z--l is a non-causal operator, so there appears to be some danger of
developing non-causal reflectances when downward continuing, but there seems
to be no danger when going up. How can the danger be avoided? Clearly,

if we are inside a layer but near its top, we should get no reflection until
after one time unit. It follows that if Ctop has been properly computed
then its coefficient of 2z° should vanish so that division by Z does not

cause to be non-causal. In a downward continuation, alternating

C
bottom
between layers and interfaces, the reflection coefficients can be chosen so

that C remains causal.

This wave extrapolation involves Rule 4, which is almost trivial
in the reflectance domain but which makes little intuitive sense in the

impedance domain.

Example: Wide angle wave extrapolation

Let s = —-Zw denote the causal positive real discrete representation

of the differentiation operator, say

- - o l-p2
s TWAt 2 1 F oz
Consider the following recursion starting from SO = s
2
X
Sn+l = st s + 8
n

F. Muir introduced this recursion as a means of developing wide angle square
root approximations for migration and developed his three rules il,2,3 to
show that every Sn is an impedance function. To see why this works, first

note that the denominator s + Sn is, for n=0, the sum of two impedance
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functions. Then its inverse is an impedance function, and multiplication
by the real positive constant X2 and addition of another s all preserve
the properties of impedance functions. As n becomes large this recursion
either converges or it does not. Supposing that it does, we can see to

what it converges by setting Sn+1 = Sn =S5, = 5. We have

2
_ X
S = s+ s+ S
2
S(s +8) = s(s+8) +X
82 = s2 + X2
S = (s2 + Xz)l/2

S = s

241v1/2
X
1+—§)
S

In wave extrapolation problems X2 is vzkxz where v 1is the wave velocity

and kX is horizontal spatial frequency, namely, the Fourier dual to the
horizontal x-axis. The quantities Sn are ikz where kz is the Fourier
dual to the depth z-axis. The cases n = 0, 1, and 2 are commonly
referred to as the 5-degree, 15-degree, and 45-degree equations respectively.
The desirability of S being positive real is related to the fact that it

is acceptable for eZkzz to decay with =z (when kz is complex) but growth
is almost certainly not acceptable. But this leads us to our next topic -

exponentials of impedance functions.

Transmittance Functions
We will define a transmittance function E as the exponential of
the negative of an impedance function

o"R(Z)

E(Z) (3)

This function occurs in many circumstances, but it occurs particularly as

the function that can Extrapolate waves across a region of homogeneous space.
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First, the magnitude of E, like C, is always less than unity by the
positivity of the real part of R. Second, E will be causal since R is
causal, and R may be substituted into the power series for exponential
(which always converges) and no powers of Z“1 arise, Third, the trans-
mittance function E, unlike C, will always be minimum phase since for
any |Z| <1, R is not infinity, and exp(-R) cannot be zero anywhere
inside the unit as it would have to be for E to be non-minimum phase. The

inverse to (3) is easily written

R(Z)

~log, E(Z) (4)

Now we can ask whether Equation (4), when used upon an arbitrary E(Z)
satisfying only the condition of causality, minimum phase, and |E| <1
will always produce a valid impedance function R(Z). If E is expressed

¢

in polar form re then its logarithm is log |r| + ¢, so since |r| <1

we see that a positive real function is indeed produced by (4). Proof of

causality is found elsewhere in this report ('"Powers of Causal Operators,"
by Claerbout and Kjartansson). It shows that (4) recovers a valid impedance
function from any minimum phase E with |E| < 1. ©Next we can develop

the four rules for compounding transmittances that correspond to the

previously discussed rules. In sequence, these are

el: E' = e = E z >0
e2; E' = unlikely function

-(R, +R,)
e3: E' = e 1 2 . E. E

e4: E'

unlikely combination

Wave extrapolation operators

Causal wave extrapolation problems in depth =z for the wavefield P

generally seem to take the form

dp

dz = -RP )



152

where R 1is an impedance function. There is a lot of physics buried in
the impedance function R but no matter what the problem, if the material
properties are independent of depth =z, then R will be independent of =z

and the solution will be

-R(z - zo)
P(z) = e P(zO) = E P(zo)

where E 1is evidently a transference function. TFor stability, the minus
sign must be present and R must have a positive real part. But we have
said nothing about the imaginary part of R which is the real part of kz.
It could be either sign corresponding to either up- or downgoing waves. We
already know that the transference function E has magnitude less than

unity |E| < 1, so that stability is ensured.

Now what happens if the material properties are depth-dependent so
that (5) does not have an analytic solution? Then we revert to numerical
techniques, the most common of which is known as the Crank-Nicolson Method.
Letting P(z) be represented at discrete intervals, say P(jAz), and

abbreviating this by Pj’ Equation (5) is represented by

_ RAz
Pj+l - Pj = - ~§-(Pj+1 + Pj)

Absorb the positive scale factor Az/2 into R, solve for and

Pj+1’
recognize that the extrapolation operator is by Equation (1) a reflectance

function C,

Since both reflectances and transferences do not exceed unity, we have not
lost the stability which we seek to achieve. The reflectance function need

not be minimum phase but that does not seem to make any difference here.

Physics of wave numbers and impedances

It is curious that we have been exponentiating the impedance function
R and the vertical spatial frequency ikz but we know that these two are not

physically the same thing. Hopefully, when applying the foregoing mathematical
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techniques to physical problems, we will find that the two are related by
the mathematical rules for combining impedance functions. Let us check
into the definitions for acoustics which are found in FGDP, pages 171 and 172.

Specializing the equations given there to the vertically incident case we have

. W
k= =

v

. = pv
Ricoustic P

where p 1is material density and v is velocity. Since we can choose <Zw
to have a positive real part it seems that both are mathematically impedance

functions, although only one is physically called the acoustic impedance.

With more general physics or numerical analysis situations, discussions
will center on modifications to some R in Equation (5). Often this will be
by addition of more terms, in which case we may speak of superposition, not
of solutions, but of impedances or of physical effects in the equations.

Other times it may be by means of the full set of rules for compositing
impedances. Inclusion of anything by any means other than the compositing

rules is asking for a computer program with instabilities. Such a program
could easily be stable for some numerical parameters, but unpredictably unstable

for others.

Redundancy of rule 4

After reading the first version of this manuscript, F. Muir commented

that rule i4 is redundant since it is derivable from i2 and i3 as follows:

Ry
—+1
R1+R2 _ R2 _ 1 N 1
1+RR, R 1 1 1
e + = +1
172 1 + R Ro R Ry =
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Exercises

1.

Take € < 0 and expand the integration operator for negative powers of Z.

Explain the sign difference.

Rule c4 will obviously still be valid under the slightly less restrictive

condition |C1| <1, fCZI <1 (we have allowed IC1| to equal unity).
a, How does this affect Rule i4?
b. How can Rule 3 be made less restrictive?

Consider the fourth order Taylor Expansion for square root in an extra-

polation equation

P _ iwl_i(z&)z_l(ﬂsf >
dz 2 lw 81w

a. Will this equation be stable for the complex frequency -iw = —iwo + €7
Why?

b. Consider causal and anticausal time domain calculations with the

equation. Which, if any, is stable?

Consider material velocity which may depend on frequency w and on horizontal

x-coordinate as well. Suppose that luckily the velocity can be expressed in

factored form v(x,w) = vl(x) vz(w). Obtain a stable 45-degree wave
extrapolation equation. Hints: Try
N
s = ==
2
X2 = ositive eigenvalue of (v. 3 )(v,?d )T
P & 1% V1%

Is the Levinson Recursion in FGDP related to the rules in this paper? 1If so,

how?



