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Abstract

A minimum phase function can be raised to any power and the result
is minimum phase. An impedance function can be raised to any fractional
power p where -1 < p < +1 and the result is an impedance function.

The causal integration operator is an impedance function. The exact square
root downward extrapolation operator is an impedance function. Its square
is a minimum phase function that exhibits "branch cut" behavior. A
fractional power of the causal integration operator gives a constant Q
form of Hooke's law. The logarithm in the frequency domain of the causal
integration operator is one side of the Hilbert transform in the time
domain. Physically this waveshape arises as the reflection of an impulse

from an interface between two media of two different constant Q's.

Introduction

Powers of causal operators arise naturally in problems of wave
propagation, extrapolation, and dissipation. To facilitate both compre-
hension and computation, some basic "functional analysis'" theorems will
first be developed with Z-transforms. Then they will be applied to

examples of migration and constant Q dissipation.

Functional analysis

We will establish, in sequence, the following theorems about

exponentials, logarithms and powers of Fourier transforms of filters:
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1. The exponential of a causal filter is causal.

2. The exponential of a causal filter is minimum phase.

3. The logarithm of a minimum phase filter is causal.

4. Any real power of a minimum phase filter is minimum phase.

5. Any fractional power -1 < p <1 of an impedance function is

an impedance function.

To establish Theorem 1 we define the Z-transform of an arbitrary

causal function

2
u(z) = u, + ulz + uZZ + ... (1)

and substitute it into the familiar power series for exponential

U U2
B(Z) = e = 1+4+UH+ E—-+ .o (lUl < ) (2)
It is clear that no negative powers of Z will be generated so that B(Z)

is also causal.

To establish Theorem 2, that the exponential is not just causal but

also minimum phase, we consider

B, = e (3a)

B = e (3b)

Clearly both B+ and B_ are causal and they are inverses of one another.
Thus, by the definition of minimum phase (see Fundamentals of Geophysical

Data Processing) both B+ and B_  are minimum phase.

Now we set out to establish the converse theorem, namely Theorem 3,
that the logarithm of a minimum phase filter is causal. Take the logarithm

of (2) and form the Z-derivative

U = 1nB (4a)

av 2
7 - oyt ZuZZ + 3u32 + ... (4b)
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.4.3_ (4¢)

du
dz

oI |

Since we assume B is minimum phase it means that both 1/B and dB/dZ
on the right of (4c) are causal . Since the product of two causals is
causal, we have dU/dZ causal. But clearly dU/dZ could not be causal

unless U 1is causal.
On to Theorem 4, which says that any real power of a minimum phase
function is minimum phase. Consider

r [ 1n Blr
e

B' = B = | er in B

(5)

Since B 1is assumed minimum phase, In B by Theorem 3 will be causal.
Scaling by a real constant r does not change causality. Exponentiating

shows, by Theorem 2, that B 1is minimum phase.

Finally we will prove Theorem 5, that an impedance function can be
raised to any fractional power -1 < p < +1 and the result is still an
impedance function. In FGDP we find that an impedance function is defined
as a causal, minimum phase function with the additional property that the
real part of its Fourier transform is positive. This means that the phase
angle ¢ 1lies in the range -T/2 < ¢ < +m/2. Raising the impedance
function to the p power will compress the range to ~-mp/2 < ¢ < mp/2.
This will keep its real part positive. Theorem 4 states that gny power of
a minimum phase function is causal, which is a lot more than we need to be

certain that a fractional power of an impedance function will be causal.

Causal integration

Causal integration is conveniently represented in the discrete time
domain by the bi-linear transform. It is shown in "Impedance, Reflectance
and Transference Functions" (also in this report) that the filter that does

this, namely

R(Z) = —Sx = —& T—= where -1 << p <1 (6)

is an impedance function (causal, real part of Fourier transform is posi-

. . WAt
tive). In this expression Z 1is the unit delay operator e7’(DA and 0
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is a positive constant infinitesimally less than +1. At low frequencies

compared to the Nyquist (wAt small) we find that & tends to w.

Extrapolation

The general form for stable extrapolation problems seems to be

P
. = R (7)

where convergence is assured by the positive real part of the impedance
function R. In reflection seismology there is great interest in the square

root extrapolation operator

v2k 2\ 1/2
_ X
Z v 2
W

(8)

At the moment we are disinterested in the space or frequency dependence of

velocity, so we set v = 1, obtaining

R = [(-iw)?2 + k2742 (9)

In (9) we would like a causal representation of the differentiation

operator such as either of the following:

2 1 - pZ TwAt
L~ BL -1 << p < =
At T ¥ pZ 1 p 1 and Z e

0 = (10a,b)

~-w + € €>0
We intend to establish that the following operator is an impedance function
R = [(-i)? + k212 (11)
L . . A 2
First note that (-Z®) is causal by (10), which means that (-ZQ)

2 . . .
is also causal. Also, k is a delta function at the time origin. Thus

R given by (l1) is causal. Next, let us look at the phase.
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Figure (1) shows how the phase of (11) is constructed from its constituents.
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FIGURE 1l.--Complex plane diagram of constituents of the extrapolation
operator R as given by (11). The right column is the same as the left
column blown up five times.
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Now we have seen that R2 is causal and that its phase has the
"branch cut" property. That is, the phase of R has the positive real
property. One of the aspects of minimum phase is that the phase does not

loop around the origin. This is easily seen by inspecting

N N
U(Z
B=e() exp ZUkcoskw+iZUksinkw
k k

exp [r(w) + 7 ¢(w)]

Here the phase is a periodic function of w, which means that in the
plane of (Re B, Im B) the curve representing B(w) does not enclose the
origin. The branch cut forces R2 to have this property and hence be
minimum phase. Theorem 4 forces R to be causal and minimum phase. That,
with the phase defined by Figure 1 proves that R, given by (9), is an
impedance function. (Muir previously established that some rational
approximations to R are impedance functions, but the proof does not

extend to the evanescent region of the square root.)

Fractional integration and constant @

By Equation (6) and Theorem 5 we know that fractional powers of
integration and differentiation are also impedance functions. In fact,
Kjartansson (1979) has advocated the fractional power as a stress-strain
law for rocks. The conventional rock mechanics studies begin with a stress-—

strain law such as

stress = stiffness x strain + viscosity x strain-rate
which in transform domain is

. 0 . . 1 . . .

stress = |(-Zw) x stiffness + (-Zw) x viscosity| strain (12)
Without for the moment considering the physics of the matter, we can consi-
der replacing the arithmetic average of the two terms by a geometric
average, say

. € .
stress = const x (-Zw) strain (13)

where € close to zero gives elastic behavior and ¢ close to one gives

. .\ E . . .
viscous behavior. The fact that (-zZw) is an impedance function meshes
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nicely with the concepts that (1) stress may be determined from strain

history and strain may be determined from stress history, and (2) stress

times strain is work. Kjartansson (1979) points out that (—iw)€ exhibits
the mathematical property called constant ¢, so that as a stress/strain
law for fitting experimental data on rocks, it is far superior to the
arithmetic average. To see the constant Q property more clearly, let us

.\ E . . .
express (—Zw) in real and imaginary parts

(—iw)s _ lwls [e—i m sgn(w)/Z] €

[w|€{cos [ggrsgn(w)] - ¢ sin [g§“sgn(w)]}

|w|€[cos (ggj - 7 sgn(w) sin (gg)} (14)

The constant Q property follows from the constant ratio between real and
imaginary parts of this function. Unfortunately, we have been unable to
find a closed form representation for (—iw)€ in the discrete time domain.

Kjartansson (1979) gives the form in the continuum as

IFT (—~w)®

|
+
+
\4
o]

(il - ¢) (15)

Although € 1is permitted to range from -1 to +1, singularities at

t = 0 may need to be considered separately.

The log integration operator is one side of the Hilbert Transform.

Since the causal integral operator (6) is an impedance function,
by Theorem 2 it should have a causal logarithm. Defining its logarithm as
U we have

1 At 1 + pZ

U(zZ) = 1n —= = 1n

~10J 2 1 -9p2 (16)
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To obtain a time domain representation of U we proceed as suggested by

Equation (4) and take the Z-derivative of any causal Z-transform U(Z)

du 2 3
a uy + 2u22 + 3u32 + 4u4Z + ... (17)

Applying d/dZ to the righthand side of (16) we get

du

3 gi-[ln(At/Z) + 1n(l + pz) - In(l - pz)]

= p Y
1+pz+1—pZ

20l 1 + (pz)2 + (pz)4 + ... (18)

Take the limit € -+ 0 where P =1 - ¢ and identify coefficients of like
powers of Z in (17) and (18). Also substitute Z =0 din (16) to find

uO. We have

(

0 for k negative

In(At/2) for k=0
u = { (19)
2/k for k = 1,3,5,7,...

\ 0 for k

It

2,4,6,8,...

What we see is that in the time domain the function 1n[1/(-Z®)] is causal
and drops off as inverse time. This is just like one side of the Hilbert
Transform including the discrete domain representation as inverse odd
integers. In the frequency domain we have

1 ) r T

In (=) = -In(-iw) = ~[1nfu] - T senw)

~1n|w| + < g-sgn(w) (20)

It
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Adding (19) to the negative of its time reverse yields the Hilbert kernel
2/k for k odd. The corresponding operation on (20) naturally gives the

imaginary sgn function.

1n (ﬁ) - 1n (17— = 4 T sgn(w) (21)

The Hilbert kernel is an asymmetric time function with 90-degree phase
shift and no color change. The log integral is causal with slight color
change and phase shift about 90 degrees in the vicinity of lwl =1,

[Do not be confused by the differing scale factor of 2 between (20) and
(21). When |w| =1, both are imaginary and odd, so that both have the
same 90° phase shift.]

Reflection from @ contrast

Reflections arise at an interface of impedance with a well-known

reflection strength

C = 57— (22)

We often think of the impedance as the velocity density product, but at non-
vertical incidence the product is divided by the angle cosine of the ray.

. \E . . .
We know that (-iw) is also an impedance function, and we may suspect

that it too could be inserted into (22) as, say R, with say R, = 1,

2 1
This gives
. \E
R (23)
(-tw) ~ + 1
Kjartansson (see p. , this report) has shown that this will describe the

physics of a wave reflected in a medium of one constant Q value from
another medium. Equation (23) is also the first term in an expansion
for logarithm, and as € tends to zero the expansion is dominated by the

first term. Thus, the reflected wave takes the form
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= £ _l_)
C = 5 log (—iw (24)

which is expressed in the time domain by Equation (19).
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