NUMERICAL VISCOSITY CONSIDERATIONS
FOR THE MONOCHROMATIC 45-DEGREE EQUATION

Larry Morley

Abstract

An analysis of a class of positive real, viscous, 45-degree
extrapolation operators shows that the customary procedure of transforming
the frequency w to w + Z€ does not give an operator with very desirable
attenuation properties. Much better dip filtering characteristics can be
realized in the evanescent part of F-K space by damping only the higher
order terms in the 45° expansion for the exact dispersion relation. As a
bonus, it turns out that an operator constructed in this manner has less
phase distortion everywhere in the passband for typical values of the

viscosity parameters.

. . . o _. . .
From a practical standpoint this means that 45 migration is best
carried out by incorporating viscous terms directly in the migration
operator. This no-cost option gives better results than premultiplying

the input dataset by exponential gain before doing a pure all pass migration.

Introduction

When frequency-wavenumber (w - kx) spectral analysis is carried out
on a seismic section, some energy appears in the evanescent region,
|VkX| > !wl. Although an earth of velocity v does not propagate this
energy, there will invariably be some noise power in this zone. This could
. be due to recording noise or, quite commonly, multiple reflections.
Whatever the origin of this type of energy, it is undesirable to downward

continue it when migrating. To get rid of it we can either apply a
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"once only" w - kx dip filter followed by all pass migration, or we can
simulate what the earth itself does and use a viscous continuation
operator. Since the signal-to-noise ratio decreases with increasing

reflection event times, the second choice is preferable.

Similar difficulties arise in diffraction modeling if the source
or reflector structure has any energy in the evanescent region of w - kx
space. Figure 1 is a good example of this type of problem. This
synthetic models a point diffractor using a monochromatic 45° program
without viscosity. Since a single point in t - x space has a uniform
power distribution in w - kx space, a pure all pass continuation filter

is clearly inappropriate.

The 45-degree problem

Implementation of viscosity in the ® - x domain is not as
straightforward for the 45° equation as it is for the 15° equation. In
the latter case, the transformation -~Zw - -Zw + & (FGDP, p. 225) yields

a propagation number whose imaginary (or attenuating) part is given by

vek 2
Im(k ) = ——2— (1)
X

2 2
2(w” + €M)
For w > £ (e assumed small), attenuation is basically a
Gaussian function of the dip, vkx/w. For w < g€, attenuation still

goes as exp(—ukxz). If we use this same transformation approach for the

(retarded) 450 equation we obtain

v 2
7 X
-iw + €
o, - et e = 0 (2)
Vo2
4 X
(~Zw + 8)2

1+

The shifting theorem of Laplace Transforms tells us that if

F(s) = F(-iw) is the Laplace transform of f(t), then exp(-at)f(t) has
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the transform F(s + a). This means that this type of viscosity can be
implemented by premultiplying the data by exp(-e€t), carrying out a

completely all pass migration, and postmultiplying by exp(et).

It can be seen from (2) that this approach does not work well
for the region of w - kx space for which (ka/w)2 >> 1. In this area,
attenuation is proportional only to exp(~£), but is essentially inde~-
pendent of kx. This means that our only recourse to suppressing super
high-dip noise is to choose a fairly large value of €. This has the
potentially disastrous side effect of attenuating moderately dipping

energy lying in the signal passband. We can do better.

Generalized 45-degree viscosity

A more general viscous 45° equation is obtained by rewriting (2)

in the form:

5 ke
9, ~ = 0 (3)
z V2k 2
X
(-Zw + ;) + A
1 (-iw + 82)

Equations (2) and (3) are not identical but are equivalent for

the case ¢, = ¢ Equation (3) is unconditionally stable for

1 2°
€158 > 0. This is easily shown using Muir's rules for combining posi-
tive definite operators (see, for example, Claerbout's 'Impedance

" this report). The most useful feature of (3), however, is

Functions,
that it gives us an extra viscosity parameter to control the shape of

the attenuation surface in w - kX space.

Before proceeding further it will be useful to develop Equation
(3) in some appropriate dimensionless coordinates. One useful
normalizing parameter is w%’ the lowest frequency of interest on the

data.

Defining m, = wz/v, we can rewrite (3) as

L
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15| ?
k 2 m
z £
- (4)
mz l. E§) 2
-im -+ El 4 mg
m, (-Zim + 82)
)

The maximum value of dimensionless viscosity that one would want
to use if the €'s are equal is S/mQ ~ 0.1. Such a choice would mean
that the exponential premultiplication decreases the amplitude by a factor
of 1/e for every 10 wavelengths of the lowest frequency of interest on
the data. (If S/m2 was significantly greater than this, we would not
be the lowest frequency of interest.)

Figure 2 is a plot of 1n(-real kz) = In(attenuation) vs.
(kx/ml) and (m/mg) for El/mQ = ez/mz = 0.1. The maximum value for
|kx/m2| and lm/mgl was chosen to be 10 since most seismic data is
bandpass~filtered at recording time with a useful bandwidth on the order
of one decade. The main feature of this plot is that this choice of

viscosity tends to concentrate all the attenuation along a ridge given

approximately by ]m/kx| = 0.5,

Choice of €'s

If we make the choice el/mz =0, €z/m2 = 0.5, then the
attenuation is distributed more evenly (see Figure 3). Maximum attenuation
still occurs for lm/kxl = 0.5 but is not as strong there as it was for
the case € =€, =0.1my. For [m/k | < 0.5, however, attenuation is much
greater for the (0,.5) choice of €'s. This comparison is made more

directly in Figure 4, which is a plot of ln[real kz(l)/real kz(2)].

From this point on we will refer to the propagation number associ~-
ated with the ”(0,82)" type of viscosity as kz(2). To designate a

propagation number of the "(g,e)" type of viscosity, kz(l) will be used.

A comparison of phase error for kz(2) and kz(l) in the

passband (lkxl < |m]) shows that kz(2) has less phase error everywhere
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in the passband than kz(l) (see Figure 5). Thus kZ(Z) gives both
improved rejection in the evanescent band and less phase error in the
passband. The only thing we have to sacrifice to gain this improvement
is some attenuation about the narrow ridge lm/kx[ = 1/2, but this is

where attenuation is maximal anyway.

The same general conclusions still hold if we discretize the
x and t coordinates (see Figures 6 & 7). Here again if 81 = 0, we

can choose ¢ to be fairly large and obtain a better distribution of

2
attenuation.
Figures 8 and 9 demonstrate the superiority of kz(2) over
kz(l) for removing the artifacts of Figure 1. The operator kz(2)
removes the offending energy completely but retains as much signal as

the kz(l) operator.

Summary

We have demonstrated that if viscosity is placed only in the
higher order terms of the 45° equation, we obtain a wave extrapolation
filter with attenuation and phase characteristics that are an improvement
over schemes which damp the 15° and 45° terms equally. This improvement
is realized only at the expense of getting a little less attenuation
along the ridge of maximum attenuation in w - kx space. This means
that 45° migration is best done with viscosity built directly into the
migration operators rather than by premultiplying the data by exponential

gain.
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Prominent noise streaks are due

to evanescent energy at low w and high k

FIGURE 1.--Impulse response of monochromatic 45
all-pass filter propagates.

program without viscosity.
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~10 (k/mp) >

10

FIGURE 5.--Plot of differences in absolute phase errors between
kz(l) and k,(2) in the zone of propagation. The positivity of this
quantity means that the kz(Z) operator has less phase error everywhere
in the propagating region. The apparent improvement is unimpressive when
it is noted that the plot is scaled to ten millidegrees. Nevertheless, it
is significant that the phase error is no worse for k,(2) than
k,(1). That is, we do not have to introduce any phase distortion in the
all-pass region in order to improve the attenuation performance of the
continuation filter in the evanescent zone.

° "Phase error" is defined as absolute deviation from the phase of
the 45 equation.
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FIGURE 6.--One db. contours of attenuation per unit
v=At =1,
approximation 9., = Oy /(1 + vSxy)

e = .1lw/At, & =0, Ax =

transfer function to go from one
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z-step, with
for the 45-degree equation. The
with vy = 0.14 was used. The
z~level to the next is given by:

1k Ax -1k Ax
_ aae + bb + aae
Hlw,k) = Tk_Ax ~Tk_Bx
ae + b + ae
2. .
where a = 4Ax Ym m, - 7,Azm2 + 1
2
b = 4Ax mm, - 2a
aa = a + ZiAzm2
bb = b - 4iAzm2
w+ ig,
and m, = — ji=1,2.
i v
attenuation = -real(ln H)
Note that the region of low |w| and high !kx| is essentially all pass

for this choice of ¢'s.
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FIGURE 9.--Same as Figure 8 except €y =0, €, = .015 w/At.
Noise streaks are completely removed without any degradation of signal.



