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Abstract

A frequency domain finite-differencing algorithm can be bullet-
proofed (made unconditionally stable) by changing several lines of code in

existing routines.

Introduction

Stability is one of the most desirable features that a computer
algorithm can have. Other desirable features are simplicity, ease of
programming, storage, and low cost. Fortunately, bullet-proofing the
45-degree procedure does not add to the complexity or cost of the

program. It only requires some careful analysis.

In the migration of upcoming wavefields, we are led to consider

equations of the form

-— U = -RU @8

where R 1is an impedance function approximating the square root
extrapolator (see "Powers of Causal Operators" by Claerbout and
Kjartansson, this report). Here we specialize to the 45-degree approxi-
mation to R. We will discretize (1) with respect to X and z while

preserving the stability properties of the differential equation.
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How to code a bullet-proof migration

The equation that we wish to discretize is similar to a one~-
way wave equation described in Godfrey and Claerbout ("Stable

Extrapolation,"” this report). Our Equation (2) controls the downward-

continuation of upcoming waves (migration). It will be shown in the
next section that it ensures depth invariance of the quadratic energy

flux U*VU when V is independent of z:
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with
+¢ for downward-continuation
-€ for upward-continuation
+w for upcoming waves
-w for downgoing waves

1
-iw + €

= causal integratiomn

Equation (2) is an equation for vectors U with components at discrete
intervals along the x-axis. V 1is a real, diagonal matrix whose entries
are the acoustic velocities at the locations where U(z) is defined.

A and S are also real, diagonal matrices, where A = V—l and S
relate to splitting and retarding (see D. Brown, "Splitting and
Separation of Differential Equations...," SEP-15, pp. 214-32). The

real, symmetric, tridiagonal matrix T has (-1,2,-1) on its diagonal
and 2's at the corners. Dip filtering is accomplished with the scalars

80, 81’ and € They also keep track of causality for use in program-

9
ming up the time-domain equivalent of Equation (2).
With these definitions, we can discretize Equation (2) so that

it is in the form
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(D3 + TD4)U' = (D1 + TDZ) U(z) (3

where Dl’ D2’ D3, and D4 are all complex, diagonal matrices. In the
absence of splitting, U' = U(z + Az). The D's in Equation (3) are
defined by

D (,02) = (Gu+e)) [1 - Gu+e) 2o - s)] (4a)
Dz(w,Az) = [ 1 5 V2 - y(Ew + 51)1}
41w + 62)Ax
[1 - 22 (Gu+ ) (A - s)] - Ly (4b)
L4Ax
D3(w,Az) = Dl(w,—Az) (4c)
D4(w,Az) = D2(w,—Az) (4d)

A proof of the validity of (4) can be found in Appendix A.

Equation (4) can be altered to handle downgoing as well as

upcoming waves and to extrapolate upward as well as downward.

Downward-continuation of upcoming waves (migration):

[DB(w) + TD4(w)] U(z + Az) = [Dl(w) + TDz(w)] U(z) (5)

Upward-continuation of upcoming waves (diffraction or modeling):
[D3(—w) + TD4(—w)] U(z - Az) = [D,(-w) + D, (-w) 1 U(z2) (6)

Upward-continuation of downgoing waves (migration?):
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[DS(m) + TDA(w)] D(z - Az) = [Dl(w) + TDZ(w)] D(z) (7)

Downward-continuation of downgoing waves (diffraction):

[D3(—w) + TD4(—w)] D(z + Az) = [Dl(—w) + TD2(—w)] D(z) (8)

Let us verify that these signs are consistent with (2). Going
from (5) to (8), the sign of w changes because of the switch from up-
to downgoing waves. Going from (5) to (6) means a switch from downward-
to upward-continuation and therefore changes of the signs of the e in
(2). But (6) projects from z to z - Az, which is like a change of
sign on the 2z-axis in (2). The combined effect is to change the sign
of w 1in going from (5) to (6). 1In (7) we have changed all three

signs (z,e,w) so the result is identical to (5).

Basic physics and a more accurate equation

The methods of Godfrey, Muir and Claerbout (''Stable Extrapolation,"
this report) show that the solution q of

t
VD D'V
. -1/2 -
%E-q = -{(iw(A-8S) +V / £ X T \Y 1/2 q (9)
VDDV
27wl + —X
27w

has the property that q*q 1is independent of =z. Asserting that the
energy flux across a datum at any particular 2z-level equals that at any

other z-level we are led to identify q*q with this vertical component

of energy flux. The appearance of V_l/2 in two places in (9) was

considered to be a slight programming inconvenience. A change of

variables to U = V_l/zq along with the approximation that V # V(z)
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reduces the exact energy conserving form (9) to the form of (2), which
we judged to be slightly more convenient. By substitution of q = Vl/zU
the conservation of q*q is equivalent to the conservation of u*vu, a
fact that justifies our assertion that (2) forms the basis of a stable

algorithm.

According to Fundamentals of Geophysical Data Processing, the
acoustic energy flow across a datum is the admittance times the pressure
P squared, say

q*q = Usvyy = P* cos § P (10)

pv
which enables us to relate energy flux variables q and u to acoustic
variables, pressure P, ray angle 6, velocity v, and density p.
For those who prefer the accuracy of (9) to the convenience of (2), the

revised coding instructions are:

(D, + T,)q" = (D, + D)) q(z)
D (w.hz) = (Gw+e) AYE [T - Go+e) 22 - 9]
) 1 0 2
Dz(w,Az) = [ 1 5 V2 - vy(Zw + 81)1] Al/2
4(Zw +A€2)Ax
{1 —A—z(iw+eo)(1\— S)] -A—szl/z (11)
4Ax
D3(w,Az) = Dl(w,—Az)
D,(0,02) = D,(w,~hz)

The demonstration of Equation (1l) is in Appendix B.
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APPENDIX A

We want to factor the Crank-Nicolson approximation to Equation (2)

so that it is in the form of Equation (3):

(D3 + TD4)U' (D1 + TD2) U(z)

Let R denote the quantity in braces in Equation (2), and let r

1’ 2’
and T, stand for <w + €y w + € and Zw + €, respectively. 1In
this case, the Crank-Nicolson approximation to Equation (2) is

o= a+2ZpTta-%w
VDXD§V -1 .
R = rl(A - S) - 2A I'ZI + TB' VDXDXV
If we let
a= 22
2
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3
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- vialva - YT)_I{[rZ(I - YT)V_I + ——l——§ TV] VD
4r3Ax

a

5 TV}

2Ax%x



The quantity V—lA_IV(I - YT~

(1 + aR)_l(I - aR) =

is independent of a
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APPENDIX B

Using the notation of Appendix A, we get a Crank-Nicolson factor

from Equation (9):

I-ar = p-2 /2 Lyy ptypl/2
2 X X
- A1/2A—1(Avl/2D _ 2 yp Dtvl/z)
2 X X
1/2 -1 1 t 1/2 a t. 1/2
A A [(rZI + Z;; VDXDXV)V D - > VDXDXV ]
Al/zA_IV(I - YT)_l {[rz(I - YI)A + —-1———2— ijvl/zD
br Ax
3
a 5 TVl/Z}
2Ax
from which:
-1
(I+aR) (I-aR) = {lr,(x - yDA + ——l_—f ijvl/zD + ~5—§-Tv1/2}"1
4r3Ax 2Ax

1
— VIV

4r3Ax 20x%
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