COMMON SHOT GATHER MODELING AND INVERSION

Allan Snyder

Abstract

The monochromatic 45° equation and the phase shift method are used
to generate and invert common shot gathers (CSG's). The modeling
algorithm uses the basic principle U = ¢D, where U 1is the upgoing wave,
¢ 1is the reflection coefficient and D 1is the downgoing wave. The basic
idea of the inversion process is to find those points in space where the
up- and downgoing waves are time-coincident, which is where reflectors
exist. This method has an advantage over the standard industrial migration
procedure in that it handles lateral velocity variation and steeply dipping
beds, which invalidate the standard assumption in industry that a zero-

offset section is identical to a CDP stack.

Introduction

The standard industrial migration process is to do a CDP stack
and then migrate the stacked section, assuming that it is a zero-offset
section. For areas without significant lateral velocity variation and
with relatively flat beds, this is a good approximation, but otherwise
this assumption breaks down (see Figures 1 and 2). The CSG inversion
technique to be discussed in this paper can handle significant lateral
velocity variation and steep dips, which are often found in geologically

disturbed areas.
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FIGURE 1.--(a) Velocity model, common midpoint gather, common
midpoint gather with NMO applied and final stacked trace for an area with
stratified media. A zero offset section would be identical to this.
(b) The same for an area with a low velocity zone, with the high velocity
used for NMO once again. A zero offset section for this geometry would
give the same result as in (a), which is not what we get here, thus demonstrating

the non-equivalence of a zero-offset section and a CDP stack with lateral
velocity variation.
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FIGURE 2.--(a) Velocity model, common midpoint gather, common

midpoint gather with NMO applied and final stacked trace for a flat bed.
A zero-offset section would be identical to this. (b) The same for a 45°
dipping bed. with the low velocity used for NMO once again. A zero-
offset section would give a point in the middle of the tail of the bottom
figure, which is not what we get. (c) The same for a vertical bed, with
the same NMO. A zero-offset section would give a point as in (a). These

demonstrate the non-equivalence of a CDP stack and a zero-offset section
for dipping beds.
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Modeling

We start with c¢(x,z), the reflection coefficients as a function
of lateral position x and vertical position 2z, v(x,z), the velocity,
and an initial downgoing wave D(x,z=0,w), where ® is angular frequency,
which is non-zero wherever we choose to fire off our shots, and has a
magnitude proportional to the strength of each shot. It is independent of
w 1if we assume a delta function source. Then we construct D(x,z,0) by
downward continuing each frequency through the velocity structure of the
model using the following two equations, which represent the monochromatic

45° equation downward continuation method (Kjartansson, SEP-15, pp. 1-20).

2v(x,z) +D +-2H_ 5 -
20 XXZ xx v(x,z) z
. (1)
_ 7w
Dz T v(x,z) D

where the subscripts indicate partial derivatives. There are ways of
getting higher angular accuracy and stability with any amount of lateral
velocity variation (Godfrey and Jacobs, this report), but for most prac-

tical purposes Kjartansson's method is sufficient.

With only depth-variable or constant velocity we use the phase-
shift method (Gazdag, 1978), also called the telescope equation, for

downward continuation. The following extrapolation equation is used:

iAz{[wz/vz(z)] - kxz}l/z

D(kX,z+Az,w) = D(kx,z,w) e

Next we use the standard zero offset section approach and start
with U(X*Zmax’w)’ the upgoing wave at the bottom of the grid, equal to
zero. We then upward continue it through the velocity structure of the
model to the surface, using the same algorithm as with downward continu-
ation, with sources wherever the reflection coefficients are not zero.
The difference between this scheme and the zero offset case is that the
sources are c¢D, not c as with zero offset. We record U(x,z=0,w)

and then inverse Fourier transform to get U(x,z=0,t), which is a CSG.

Note that the shot does not have to be in the center of the grid

and in fact can be off the grid completely in order to simulate marine
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data. To simulate a marine CSG, we can compute D for the grid spanned
by the shot and geophones, but then only calculate U for the grid spanned

by the geophones. It turns out that the same thing can be done with inversion.

Inversion

Inversion proceeds in a similar way. We need D(x,z,»), which
can be computed just as with modeling, along with v(x,z) and
U(x,z=0,t), the recorded CSG. We Fourier transform U(x,z=0,t) to
get U(x,z=0,w) and then downward continue it one =z-step with the 45°

equation or the phase shift method once again to get U(x,Az,w).

Now we need to derive some relations for ¢ in terms of U and D.
We use the imaging principle, "Reflectors exist in the earth at places where
the onset of the downgoing wave is time-coincident with an upcoming wave"
(Claerbout, 1976). For a monochromatic source, the up- and downgoing waves
will be phase at the reflector. However, there will also be many other
places where the waves will be in phase. To remove this ambiguity, the
true image is obtained by superimposing the images produced by many
different monochromatic sources. Figure 3 from Peterson and Walter (1977),

nicely illustrates this principle. Thus we are using the following equation
for ¢ (Claerbout, 1971):

~ Ux,0z,0)
c(x,Az) Dix. hz.w) (2)

From this we can derive four almost equivalent expressions:

U(x,Az,Ww)
D(x, z,w) + € (3)

e™

2: U(x,Az,w) D*(x,Az,w) (4)
m D(x,Az,w) D*(x,Az,w) + €

c(x,hz) ~ Y U(x,hz,w) D*(x,Az,w) (5)
w

U(x,Az,w) D*(x,Az,w)

(6)
D(x,Az,w) D*(x,Az,w)

e™ eM™
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FIGURE 3. (from Peterson and Walter,1977)--Holographic imaging of a
truncated bed using a single source and 24 receivers. (a) Reconstruction of
the reflecting subsurface using a single frequency and only one geophone.
The location of the reflector is unrecognizable. (b) Lateral resolution is
increased by superimposing the reconstructions from all 24 geophones.

(c) Vertical resolution is increased by superimposing six different
frequency reconstructions like (b). (d) Superposition of 26 frequencies
using all geophones. The location of the bed is now easily recognized.
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where * indicates complex conjugate and € is a small number added in
to cure a zero-divide problem. The idea here is to crosscorrelate the down-

going wave at the traveltime that it takes to get to the reflector with the

upcoming wave at zero traveltime. These expressions reduce to the zero-offset

case [e(x,02) = I UGx,02,0)] if D=1 and € =0. D* is introduced to
make real numbers out of the denominators and hence reduce them to scaling
factors only. Equations (4), (5) and (6) have been implemented. We can
get Equation (5) from (4) by ignoring the denominator of (4), which means
that the results of (5) must be exponentially gained to get true amplitudes
out of them. Equation (6) has problems with noise caused by division

by I D D*, which varies quite a bit. Equation (4) has the same problem
withw D D* if € is very small, but if € is large it dominates D D%
and then (4) essentially behaves like (5). Deciding what value to use for
£ 1is trouglesome, however. See Figures 4 and 5 for a comparison of the ¢

estimators.

Now that we have estimated ¢ at this z-level, we then downward
continue to the next z-level and compute ¢ once again, and continue
in this manner all the way to the bottom of the grid. We then have

c(x,z) for the grid spanned by the horizontal extent of the geophones

plus the width of the area that is zero-padded (see Figure 8)
and the maximum depth we downward continue to. The grids for adjacent
inverted CSG's overlap each other considerably and so we can stack the

's for the whole line.

overlapping results in some way to get the final ¢
The result is a migrated depth section such as that obtained in normal
processing by collection into common midpoint gathers, normal moveout
(NMO), stacking, time migration and then finally time-to-depth conversion.
The depth section can be converted back to time by the usual method if so
desired by the interpreter, or the CSG inversion scheme can be modified

to yield migrated time sections (Lynn, SEP-14, pp. 87-94).

Problems

The first problem is the shot waveform. This problem is common
to all migration methods and so we usually do deconvolution before
inversion and hope that we have reduced the shot waveform to something
resembling a delta function. It is possible to include the estimated shot
waveform with the downgoing wave and try to process non-deconvolved data
but since we never have a gobd estimate of the shot waveform this method

is doomed to failure. The other possibility is to deconvolve after
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FIGURE 4.--
(a) Model.
(b) CSG generated from (a) using the phase shift method.
(e) Inversion of (b) using the phase shift method and % UD*.
(d) Inversion of (b) using the phase shift method and g UD*/& DD*.
(e) Inversion of (b) using the phase shift method and £ (UD*/DD*) .

(f) Inversion of (b) using the phase shift method and
% [UD*/(DD* + .01)]. This gives the best results.
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This has the same problem as (d).
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inversion, as we can invert the CSG assuming a delta function shot wave-
form, which just gives an inverted section with the shot waveform still

there.

The next problem is velocity estimation. We must know the
velocity in order to carry out the inversion. This is a problem with all
migration schemes, but with this one it is especially acute since this
method is useful only where there is significant lateral velocity variation,
but no one has come up with a good velocity estimation method to handle
lateral velocity variation. CSG inversion is quite sensitive to velocity
errors (see Figure 6), which is useful in suppressing multiples (see below)
and in velocity estimation (see page 75), but causes trouble when we do
not know the velocity very well. Work is currently being done on what appears
to be an excellent estimation procedure for lateral velocity variation,

however (Lynn, SEP-14, pp. 95-118, and SEP-15, pp. 39-56).

Another problem which there is no way around is that interpreters
like to have an unmigrated time section as an intermediate product in the
data processing procedure, which CDP stacking gives but CSG inversion

does not.

It might appear that CDP stacking has an advantage over CSG inver-
sion with regard to signal-to-noise ratio and multiples, but this is not
true. Multiples will be migrated with the wrong velocities and will
be dispersed considerably in the inverted sections (see Figure 7) due to
the velocity sensitivity of CSG inversion, and upon stacking most of the
noise still present in each inverted CSG will tend to cancel out compared
to the coherent events, which will add together, just as with a CDP stack.
In fact, as demonstrated in Figures 1 and 2, a CDP stack will be noisier

than a CSG inversion if there is lateral velocity variation or dip.

Cost is a major problem with this scheme. The standard industrial
procedure of gathering into common midpoint gathers, NMO, stacking, time
migration and time-to-depth conversion is very cheap compared to the cost
of migrating all of the CSG's and then stacking them. It is hoped that
the improvement in accuracy will more than offset the increased cost. With
0il costs rising in general due to its scarcity, increased processing costs
may be less of a factor in the future. Note that there is no advantage to
CSG inversion in areas of stratified media and no dip, where conventional pro-
cessing will still be the best choice, since it is just as accurate and much
cheaper. Even if CSG inversion proves to be no more accurate than conven-
tional techniques, if it turns out to be useful with multiples it may be

worth the extra cost in multiple-prone areas (see page 80).



640 m

69

0.0 x (m) 1600
X
8
e v =200 % i
c = .1 m/sec m
1600 m
Ged
(a) (b)
% (m) 1600
20.0 20.0 x (m) 1600
} }
z (m) b
z (m) 1
“
£40.0 640.0
() | | (@)
20.0 x (m) 1600
I
wb
z (m) 'I
N
640.0
(e)
FIGURE 6.—-
(a) Model.
(b) CSG generated from (a) using the phase shift method.
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Inversion of (b) using the phase shift method, I UD* and
. . w
the right velocity.

Inversion of (b) using the phase shift method, % UD* and
a velocity of 2800 m/sec. Note how much more
coherent (c¢) is. This shows the sensitivity of this method.

Inversion of (b) using the phase shift method, % UD* and
a velocity of 3600 m/sec. This gives results
similar to (d).
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FIGURE 7.--(a) Model. (b) CSG produced from (a) using the phase
shift method and including the first multiple. (c) Attempted inversion
of (b) using the phase shift method and % UD%*. The top event is the
primary, which is clearly focused better than the multiple. This is
because the inversion program thinks the multiple has a velocity of 6400
m/sec, when it onlyhas a velocity of 3200 m/sec, and thus it is not
migrated properly, which is what we want. CDP stacking does the same sort

of thing.
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The last and perhaps most important problem is end effects.
Usually we will only have about 48 traces to work with, compared to about
1000 time points, and so there will be a shortage of traces to work with.
It is possible for reflectors off the end or the inside of the geophone
spread to reflect energy onto the geophones, not to mention crossdip. See
Figure 8 for a way to deal with this. Figure 9 shows the various field

geometries and how they are related to end effects.

A way of getting around the end effects problem, though it does
remove the shot space aliasing advantage of CSG inversion (see below)
is to slant stack each of the CSG's (Schultz, SEP-9). This consists of
applying linear moveout to a CSG, with the slope of the correction
depending on p, the ray parameter, and then stacking all of the traces
together. Different p values enhance different parts of the gather,
depending on the slope of the data on the gather. This will change the
lateral coordinate to midpoint rather than offset, thus reducing the end
effect problem considerably. since there are many more midpoints than
offsets. Each section could be inverted by using a slant plane wave as
the initial condition instead of a single shot, and then otherwise following
the same procedure as before. This could be done for several different p
values to enhance different areas of the section and then, if desired,
all of the sections could be stacked together. Thus, instead of inverting
1000 CSG's, about 10 sections with different p values would be inverted,
which would be cheaper by a factor of about 10, since we would invert 10
1000-trace sections instead of 1000 96-trace sections (allowing for zero
padding of 24 traces on each side). Slant stacks have the disadvantage,
however, of introducing aliasing and often destroying information in the

CGS's when stacking, much as a CDP stack does.

Comparison with other methods

So far CSG inversion has only been compared to the standard zero
offset industrial migration process. There are four other migration schemes
that also claim to have advantages over the conventional method. These are
constant offset section migration (also called migration before stack),

Devilish, shot-geophone migration, and slant midpoint migration.

One advantage that CSG inversion has over all of the above methods
is that it has no problem with shot space aliasing. All of the other schemes
must have closely spaced shot points in order to get good results, while

CSG inversion works with one CSG at a time, and thus it does not matter how
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FIGURE 8.--Model, CSG and inverted CSG for a point diffractor off
the grid. This illustrates how zero padding on each end of the grid allows
reflectors off the grid to be imaged somewhat. Otherwise the energy would
be absorbed or reflected off the boundaries, which implies that it is
lost or incorrectly positioned. The same thing can be done when the near
traces are missing (see Figure 9). The amount of zero padding needed is an
open question right now and will depend on the grid size used.
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FIGURE 9.--(a) Split-spread field geometry with the near
offsets small. The zero-offset trace can be extrapolated accurately
and thus there is no end effect problem around zero offset. We can
work with 48 contiguous traces. This is the most common land shooting
arrangement. (b) Same geometry with large near offsets. The small
offset traces cannot be extrapolated accurately, which causes end
effect problems around zero offset and allows us to work with only
24 contiguous traces. An alternate way of handling this would be to
migrate the gathers on the left and right of the shot separately,
but this would be worse, as we would then have to zero-pad a lot to
the left or right of the shot to image diffractors there. (c) and
(d) Marine geometry with a small near offset. Using reciprocity
we can couple this data with a common geophone gather consisting of
a geophone at the shot location and an array of shots that is the
mirror image of the original CSG. Now we can extrapolate the zero-
offset trace and then work with 96 contiguous traces, thus reducing
the end effects problem considerably. This cannot be done with a
split-spread arrangement. (e) Marine geometry with a large near offset.
Reciprocity could be invoked here, too, and would help the zero-
padding problem near zero offset, since diffractors far to the left
of the shot could be imaged in the reciprocal common geophone gather
without doing a lot of zero-padding.
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close together the shots are. Hence, in areas of rugged topography

where getting closely spaced shots is hard or impossible, CSG inversion
may be the way to go, especially since such areas usually have significant
lateral velocity variation. Multiplicity is still desired whenever it is
practical, however, as discussed previously. Field setups might be

geared towards fewer shots but longer spreads and/or more closely spaced
geophones. This would be cheaper than conventional techniques, since
laying geophones is cheaper than firing shots, and it would also cut down

on the end effects problem.

Constant offset section migration would cost half as much as CSG
inversion due to no zero padding and would not have nearly the end effect
problem due to using midpoint rather than offset as the lateral coordinate,
but unfortunately no one has been able to come up with a good way of

doing it as yet when there is significant lateral velocity variation.

Devilish, pioneered by Digicon (Judson et al, 1978), maps non-zero-
offset data into zero offset and then stacking and migration is done as
usual. The idea is to change the steeply dipping data in non-zero-offset
data so that it will stack using a flat dip velocity function. It is
relatively cheap compared to CSG migration, since converting one type of
hyperbola into another takes much less computer time than collapsing a
hyperbola. It has the additional advantage of generating an unmigrated
time section as an intermediate product, which is helpful to interpreters.
Unfortunately, Digicon has not disclosed how it does Devilish, though
attempts are being made to figure it out (Deregowski and Rocca, this
report, and Claerbout and Yilmaz, also this report). Devilish is designed
to handle steep dips; however, it is not designed for lateral velocity

variation.

Shot-geophone (s-g) migration involves downward continuing the
shots and geophones into the earth and picking off the migrated depth
section at zero traveltime and zero offset for each z-level (Lynn, SEP-14,
pages 5-12). We must work with all of the recorded data at once and
alternately doward continue CSG's and common geophone gathers. This can
be done using one ®w at a time with Kjartansson's method, and it turns
out that there is about as much data handling as with CSG inversion,
since all of the data for one ® will normally fit in an array processor,
thus eliminating the reordering from CSG's to common geophone gathers

problem. S-g migration's end effect problem is similar to CSG inversion's
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except that less zero-padding is needed for the far offsets, since here we
only downward-continue one z-step at a time versus all the way with CSG
inversion. This method will handle lateral velocity variation, and so it
will be interesting to see how it compares with CSG inversion, as work is

being done on it now.

Slant midpoint migration involves slant stacks of common midpoint
gathers (Ottolini, SEP-14, pp. 37-58). Then every stacked section, each
made with a different p value, is migrated using a Stolt-type algorithm.
The cost is slightly less than the CSG slant stacking method described
on page 71 due to the greater speed of frequency domain methods. It also
has the advantage of producing an unmigrated time section as an inter-
mediate product. Besides the aforementioned aliasing problem, slant
midpoint migration has the limitation of only being designed for depth—
variable velocity. It has been tested against Devilish and conventional
processing and has been found to perform better than the conventional

method but not as well as Devilish (Ottolini, 1978).

Examples

Figures 10-13 show some examples of CSG modeling and inversion
with the 45° equation and lateral velocity variation. Note that so far
the inversion technique has only been tested on synthetic data generated
by the inversion scheme run backward. This really does not prove anything,
and so the next step is to try it on synthetic data generated by other

means from more complex models. Eventually real data will be used.

Future directions

A possible application of CSG inversion is with velocity estima-
tion. Laterally coherent events should be continuous when correlated
across adjacent inverted CSG's, and if they are not, it is a sure sign
that the lateral velocity variation in the area has not been estimated
correctly. Thus, inversion with different velocity functions can serve
as a method for getting the right velocity function in an area with lateral
velocity variation. However, some means of estimating velocity beforehand

must be used.

The other potential application is in the suppression of multiple
reflections. CSG modeling offers a way of modeling them very accurately,
since we simply use the negative of the upcoming wave at the surface as

the initial condition for the downgoing wave in order to generate the
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first free surface multiple, and then we repeat this process to produce
free surface multiples of any order. This only works for free surface
multiples, but they are often the most important anyway when compared to
interbed multiples, which we neglect. The CSG can then be compared to the
actual data in order to identify the multiples, which can then be zeroed
out.

We can also use CSG inversion in conjunction with Don Riley's
multiples inversion scheme (SEP-3) in order to remove the multiples while
doing a CSG inversion. He works with the 15° equation and constant
velocity, but this could easily be extended to the 45° equation and
lateral velocity variation. Riley's method must be implemented in the
time domain, but Kjartansson's frequency domain method could still be
used for downward continuation, and then the waves could ?e put into the
etwt F(w)

for subsequent comparison of U and D to remove the multiples. A

time domain for any particular time t wusing £f(t) = %

time domain version of Kjartansson's program could be used, too. There
are problems with this approach, however. The multiples must be modeled
very accurately in order to remove them with this scheme, and hence shot
waveform and velocity errors are even more critical here than with

inversion alone.

This same method could also be used for stratified media,
however, using the phase shift method for downward continuation, which is
exact and much faster than a finite difference scheme. Since we can
estimate velocity very accurately with stratified media, this might be a

very practical multiples suppression scheme.

Finally, the slant stacking technique described on page could
be used with either the phase shift method or the 45° equation scheme

described above to remove multiples.
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