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Abstract

The theory of constant offset sections discussed in this paper
allows them to be mapped to a fixed offset and compared in order to
provide a method of velocity analysis. The mapping to zero offset
might provide an alternative processing procedure to NMO and stack.
Regretably, the theory does not provide exact solutions in closed form.
Two alternative sets of approximate expressions for the frequency/
wavenumber migration of constant offset sections are derived for layered
media. These are the low offset approximation valid for all angles
of propagation and the 15° approximation valid for all offsets. The
angular amplitude variation for a migration operator is also derived

from the double square root equation.

Introduction

The objective of this paper is to promote a better understanding
of migration principles as applied to constant offset sections. We will
interrelate geometrical optics with wavefield concepts and employ the
double square root equation (Clayton, SEP-14; Claerbout, SEP-15) to
define direct mappings from the gathers of the seismic field experiment
to zero-offset sections, and hence, ultimately to the migrated seismic
section. These mappings are obtained by means of the principle of
stationary phase, which allows us to "ray trace" down to a reflector and
then back up again to the surface. The velocity appearing in our equations

is the true velocity v and has to be replaced by the half-velocity
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¢ = v/2 1in order to relate the mappings to the equations obtained under

the exploding reflector concept.

En route we develop a ''smear-stack" operator for mapping
constant offset gathers onto zero offset. The idea is to illustrate
how geometrical optics can be used to define the key components of
corresponding wavefield operators rather than to propose a practical

algorithm.

Mapping to zero offset: geometrical optics argument

We start with a constant offset gather in the (y,t)-plane where
y 1is the midpoint and ¢t the two-way traveltime. This plane is now
seeded with a single impulse at vy = Yho to=ty (Figure 1), and the
equation of the corresponding reflector in the (x',T)-plane is found,

where T 1is the one-way vertical traveltime. The equation is clearly

tS + tg = th or just the classic ellipse, which for vy = 0 becomes:
———(X')2+T2—1
2 2
a b
with = l—vt
* a 2 '*n
e 2 2\M2
and b = b _h - 2
4 2 2
v

where h = %—f is the half-offset, and tO is the two-way zero-offset

vertical traveltime.
The next stage is to simulate the zero-offset experiment for
this reflector. Each point P(x',T) on the elliptical reflector maps

x %! to an image point (x,t) din the zero-

offset section, where (x,0) is the
surface point of intersection with
the normal to the ellipse at P,

and t = 2r/v 1is the two-way travel-

time. Using the parametric form
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(y,t)~-plane
: Constant offset gather

t + ¢t = t = constant

(x',T)-plane
: The plane of a migrated section

T = one-way vertical traveltime

FIGURE 1.--Mapping from (y,t) to (x',T).
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of the ellipse (x = a cos ¢, T =b sin ¢) we obtain

2.2
(a _Y¥b ) cos ¢

and

On substituting for a and b we achieve the equation of the required
smile. This defines the curve along which energy at any point (yh,th)
on the non-zero offset section is to be "smeared" when mapped to

zero offset:

X = EE— cos ¢
2vt
2 to2 2 |1/2
t = tO sin"¢ + —5 cos ¢
*h
-h —f2/2vth +f2/2vth +h
‘ | ! T
\ g | ; X
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This smile is seen to be laterally bounded according to

| x| <x = f2/2vth (cos ¢ = +1) and to bottom at and is itself

tO,
part of a larger ellipse with velocity-independent semi-axes h,tO. In
the section on layered media it is shown that the axes of the corres—

ponding ellipse are approximated by Mh,t where

09
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The mapping defined by the smile may now be written in terms

of the smear-stack operator S:

PO(x,t) = f[ Ph(y,th) . S(x—y,t-—th) dy dth

where

2
X
L(x) &t - to(l —h—2

1/2
S(x,t)

lx|<xm, t>0

0 otherwise

L(x) defines the amplitude distribution alcng the smile.
Although wave theory could be used for its definition, we will simply
take the amplitude to be proportional to the curvature of the elliptical

reflector; in which case:

vt
L(x) « ——%(I-sz)
2h
with
V2t2
A = —3—2 g -1
om?% \ 4n

A simple algorithm was written for applying the above time/
space~variant convolution via a "smear-stack" with L(x) mnormalized
to unit dec. Note that under the above definition A is not necessarily
positive. For either shallow events or high offsets it will become
negative, implying an increasing rather than a decreasing amplitude
toward the extrema. This may be witnessed in the top smile of Figure 2,
which corresponds to an offset of 30 traces or 750 m; Figure 3 shows
the smear operator reducing to a pure impulse for deeper events at a

lower offset of 500 m.
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From ray paths to waves

In the next section we will Fourier transform the smear operator.
Here we use geometrical optics to deduce the expected form of the
transform and also to derive a few results that will prove useful in

later sections.

Consider a zero-offset section. The normally reflected energy
from the planar element at P with dip o will have a two-way traveltime

S > of t = (2x/v) sin a, where x

a) =0 is the coordinate of the shot/
geophone position S relative to
an origin at the point of emer-
gence of the plane reflector.

dip angle Differentiation of the two-way

Q
i

angle of emergence traveltime yields dt/dx = (2/v) sin q

D
il

or ray = -qg and defines the reciprocal velocity

at which a planar portion of the
* reflected wavefront intercepts

the =x-axis on arrival at S. We follow the SEP convention and adopt:
exp[Z(kx + kzz - wt)]

for our plane wave eigenfunction, in which case,
F.T(3) = -tw whilst F.T(3) = 7k

Hence, the time differential dt/dx = (2/v)sin o becomes k/w = -(2/v)sin a

in the transform domain, or

kv
20

sin 6 =
An identical result can naturally be obtained by substitution of
the plane wave eigenfunction into the scalar wave equation, which, in

terms of two-way traveltime t, is

2
z

4 2 N
——2‘3 P = 0
v

(axz +3 t
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We will now apply geometrical optics to a non-zero-offset section
and employ the small offset, deep reflector approximation by regarding

the midpoint as the recipient of the reflected ray.

L . N From the geometry:
o l 2
y ) Yy - V¥y =Y sina
N 70 1 s M¢6
&) h/h
, z = y sin o cos o
y'e
Os
P and the total travel path SPG is of
PM =y sin o length:
d = PS + PG
241/2 2 25172
=[(y—yo—h)2+z]/+[(y—yo+h)+z]/

As the half-offset h is assumed small, we employ the binomial

expansion to obtain

h2 0 2@
d =~ 2y sin a + ~—E;i—*
y sin o
2 2
or ¢ = 4 . ¢ 4 2hcos©
v 0 v t
0

which reveals the well-known v/cos 6 term, required if NMO is to be
correctly applied to dipping events. Also note in passing that the
vertical depth of the reflecting element is given by

vtO vt0 k2v2 1/2
z = — cos 6 = 1 -

2 4w2

a result that will prove useful later.

We will now write

t = to + AtN
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where t 1s the observed two-way traveltime

t0 is the (required) zero-offset traveltime

and AtN is the moveout operator required to map constant

offset sections to zero offset

Hence,
2
AtN N Zh c0826
v t0
- 2h2 1 - k2h2
v t0 sz
= Atn + Atd

where Atn is the standard normal moveout term and Atd is the dip

moveout. In the Fourier domain the above corresponds to a "shift"

operator of the form

2]
il

exp(—iwAtN)

exp(—twAtn) . exp(—ﬂwAtd)

The angle 6 wused so far is the angle associated with the zero-

offset two-way traveltime geometry of the idealized seismic section. We

will now deal with the one-way time geometry of the constant offset

section and introduce the angles Yoo Yg subtended at the shot and

geophone by a ray path at an arbitrary diffractor point P, at depth z.

Now sin Y = vks/w = Vp_>

sin Yg = vkg/w = VPgs where
kS, kg are the wavenumbers of
the planar wavefront components
emerging from the shot and
incident on the geophone,
respectively, whilst P and

pg are the corresponding Snell
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parameters for the ray paths. As the shot/geophone separation is 2h,

we may write:

2h = x - x

z(tan Y, ~ tan yg)

VpS _ Vpg
2 2.1/2 2 2
P, ) / 1-v Py )

1l
N

(1-v 1/2

We now introduce the midpoint wavenumber

k = k +k
y 5 8

and also define

zvk

F(k) = w

1 - Vzk2
2

w

1/2

in which case the previously derived ray-trace expression may be rewritten:
2h = F(ks) - F(ky - ks)

This equation will provide a link between geometrical optics and wave
theory in the form of the double square root equation. At zero offset
the ray paths SP, GP become coincident (ks = kg) so that ks = (1/2)ky-
In this context we can regard the general offset solution as a 'perturba-

tion" of the zero-offset case with

k = l-k - Ak
s 2y

Thus, the correcting wavenumber Ak 1is given by

Ak = k -k

s

b4

(

~

g K

*n
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where kh is the half-offset wavenumber. We may therefore rewrite

the ray trace equation:

- 1 1
2h F [2 (ky kh)} F [2 (ky + kh)]
Before moving on to the Fourier transform of the smear-stack
operator (next section) we will look at a few examples of it in action
on dipping events. Figure 4 shows a ray-traced constant offset section

and Figure 5 the result of applying the smear-stack to it. The corres-

ponding idealized zero-offset section can be seen in Figure 6.

— f

b

o) y

sY

The constant offset section was generated according to

2 _ [fz + 4r(r + f sin )]

2
v

where r = [y - (1/2 £) Jsin o3 tg = (y sin a)/v. This is the exact
equation for a constant velocity medium and can be derived by applying

the law of cosines to triangle SS'G.

Fourier analysis of the smear operator

Ignoring amplitudes, we can regard the smear operator as defined

in terms of the O-function:

S(x,t) x| <x; t>0

( X2)1/2
St - t. |1 - =
0 h2

= 0 otherwise
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0.0 offset = 20 traces = 500 m
velocity = 2500 m/sec
§x = 25 m; 6t = 0.02 sec
"
f/v = 0.2 sec
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zero offset via smear stack operator.
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We now transform the above into the (w,k)-domain:

o0 X

§(w,k) = f dtj. 0 ax S(x,t) expl-Z(kx - wt)]
0 -X
m

X 211/2
Jﬁ ™ dx exp —i[kx - wt |1 - % ]
0 2
—x h

m
Assume that X is small, so that within the range of integration,

fl

X2 1/2 2

1 - XA x 1 -2

=
N
=

in which case,

X 2
§(w,k) = f 0 ax exp{—i[kx - wto(l - X__z_)}}
“Xn 2h

But as X is assumed small, we introduce the integration factor
exp(—sz), where A should ideally be chosen such that the integration
factor approximates to unity within the range of integration and to

zero outside it. Alternatively, exp(—sz) may be interpreted as an
imposed amplitude variation along the smile. Ih either case, it allows

us to extend the range of integration to infinity.

it oo 2 Wt . X
S(w,k) = e 0 ,[ dx e Ax exp|-Llkx + 02
—co 2h

and obtain the result by reference to standard tables of integrals,

from which, for A > 0,

Sl - twto 1T1/2h . —Ak2
W, = e 2. 2\1/4 exp 2 2
42 Wt , Wity
h A + 4AT +
4 4
h
=t hzwk2
© expi-i!¢ - 24 0 5
4h A2 + wzt
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wt

L ant
2 2h2A

with ¢

We will first let A = uaz/h4 (where 1y 1is an arbitrary scale factor),

2 . _ . .
use X = 2h /vth, and define p = wxmto/(uvth) to obtain (after normali-
zation to unit dc amplitude):

Wt 2.2

= e O T k 7 -1
S(w,k) —21/4 exp ——2 exp| - 5 O tan PO
(1 +p7) 4(1 + 09)
ix zpkz
m
eXp T
4(1 + p7)

The above form corresponds to small offsets (when the defined value of
A= az/h4 is large), and since © 1s proportional to h2, it reduces

to the pure shift operator exp(iwto) when h - 0.

The "high" offset form (but with h << Vth) is obtained letting

A > 0 in the original result, which yieélds

Twt
_ nl/zh e 0 -im/4 ikzh2
Sk) = g e T expgug
(Zwto) 0

where, apart from the required dip moveout term (Figure 10),

We also have a phase shift combined with a half-integrator:

in/4 /2
e _ &
V w Viw
and an amplitude decay proportional to tollz. This warns us that corres-

ponding corrections will have to be devised for the time domain smear

operator if it is to be viable at high offsets.
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Figures 7-12 demonstrate the problems with the raw smear-stack
operators at high offsets (f = 40 traces = 1000 m; f/v = 0.4 sec).
Figure 7 shows the ideal zero-offset section (but without diffractions),
and Figure 8 the constant offset section input to the operator.
Figure 9 is the result of the application of the full smile, whilst
in Figure 10 the operator has been artificially cut back so that the
smile has half its natural horizontal extent (xm' = xm/2 = f2/4vth).
Note the amplitude decay with depth and the fact that the shallow reflector
at small dip (100) suffers, if anything, greater distortion than the
steeply dipping deeper reflectors. The dip'moveout component may be

clearly seen.

Figure 11 is a repeat for the first half-second using twice the
vertical sampling rate with an impulsive reflector. Finally, Figure 12
shows corresponding mappings to zero offset of constant amplitude
diffraction curves. This is clearly a less demanding test. It should be
emphasized that the "dispersion" near the input level t = f/v is not

confined to time domain operators.

Stationary phase approach to normal and dip moveout

We start with the double square root equation (Claerbout, SEP-15),
which was originally formulated as a downward-continuation operator

[Clayton, SEP-14, Equation (5)]:

. W
P(ky,kh,z,w) = P(ky,kh,O,w) exp[i = @ (ky,kh)z]

We wish, however, to move away from the concept of downward-
continuation with its allied iméging principles. Instead the wavefield
is considered as a constant multi-dimensional block that when sliced in
the (x,t)-plane yields the seismic section, whilst in the (x,z)-plane
contains the reflector model. We map directly from one to the other by
ray tracing via the double square root equation and the principle of
stationary phase. The key idea here is that the stationary phase approxi-

mation ray traces by providing the far field solution along the ray path.
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The phase function ¢ of the double square root equation is

given by:
vz 1/2
2ipplg) = 1=

2 V2
+ 1——2

w

ky + kh
2

Direct implementation for constant offset sections therefore requires
their formulation in ky,kh—space. As noted by Clayton (SEP-14, p. 25),
the above operator is not separable in the transform domain, and hence
its application would require simultaneous migration and stacking with
the full three-dimensional Fourier transform. We will therefore
abandon the kh—domain and define the corresponding Green's function in
terms of ky’ z and h:

) —ikhh
M(ky,z,h) = Jrexp(tzw@/v) e dkh

where
k + k k -k
e - ool x_ Bl Loy __h
v 2 2
if we define
ZW v2k2 H2
G(k) =.\_7—1—m2

We now make the substitution ks = (ky - kh)/Z and eliminate kh so that

the Green's function is seen to correspond to a convolution product:

M(ky,z,h) = -2 fexp{i[c(ks) +ksh]} .
exp{z[G(k - ks) - (k - ks)h}dks
= Hj(k) * Hy(k)
where ﬁi 2(k) = i\[; exp{Z[G(k) + kh]}

The above corresponds to two ray-tracing components, one for the shot at
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surface position y - h and the other for the geophone at y + h. 1In the

y-domain, this convolution becomes the direct product of appropriate

Hankel functions: H(y-h,z,w) - H(y+h,z,w).

This could be computationally feasible, but let us instead return
to the Green's function and perform the integration according to the

principle of stationary phase (Born and Wolf, Appendix III) to derive

cheap wavefield continuation procedures:

1/2 )
J(éxp [Z W(ks)dkS] x —~:£;—— exp{i[W(KS) - w/47}
2¥'"(K )
s

where ﬁs(k,h) is found by solving W'(ﬁs) = 0.

From W(ks) = Gk - ks) + G(ks) - kh + ths, where k = k_,

we obtain

V(o — ot L V(i -
YIR) = -6'(k ~K) +G'(R) + 2n 0
But ~zwk
' _ v
G'(k) = 2 2\1/2
(1 v k
2
0%}
)

where as we have seen that F(k) 1is just the horizontal projection of
the one-way ray path to depth z. The equation to be solved for the point

of stationary phase is, therefore, simply

I

2h F(KS) - F(k - KS)

F[%— - Eh)] - F[—;—(k + ﬁh)}

Even in a constant velocity medium the "sideways continuation
operator" cannot be solved for in terms of a general explicit expression,
but has to be considered in terms of the root of a quartic. We will
therefore seek approximate solutions that are appropriate when either
h is small or k is small. Ultimately we might consider numerical
solutions, which in fact would be the approach for general velocity

variations.
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We will first consider the small offset solution, which will
nevertheless be correct for all angles of incidence. Taylor's expansion

is employed with F_ = F(k/2) to obtain

2h

144
—
r]

(o]
N
5
[
o
+
N =
ST
e
—
N
i
o-
— 3

Hence,

A ~ 2hw _ kzv2 3/2

=~ - 1
Kh vz 4002

or, on using ty = (2z/v)cos 6 (with sin 6 = kv/4w),

A 4he k2y2
K T 7 1 -=
vt )

0

This equation is related to the value given to H = vK /w by Clayton
y

in SEP-14 (p. 32) and now more correctly referred to as the operator H

by Yilmaz and Claerbout in this report (p. 13). In the kh—domain

the Green's function is seen to be non-zero only in the neighborhood of
kh = Kh(k,h). This tells us that we can substitute ky = ﬁh in the
double square root equation without any great loss of precision

(the more general expression for layered media will be given later).

So that we now have

N 1 ”~ 1 A~ A
= G| =% (k + + - (k - - kh + (k - h
v 5 (e +K)| + 6y (k- K| - kh+ (k- K
2 9 1/2 2 2 9 3/2
~  Z2W kv h k™v
~ — 1241 - + = |1 - ——
v 2 2 2
4u pA L

where Taylor's expansion has once more been employed. The phase
component of the double square root equation therefore yields the

operator

exp(Z ¥) = exp (iwAtM )
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where

2

_ 2z hY 3, _
AtM = o cos 6 + <5 oS 6 = Atm + AtN

is the total migration moveout for small offset sections. The component

moveout term,

I

gE-cos 0

Atm v v 2

is that required for the migration of zero-offset sections as given by
the telescope equation (Claerbout, SEP-11: "Migration with Fourier
Transforms"). The second moveout component AtN represents the total
normal moveout in the presence of dip and is the same as the result
obtained with geometrical optics:

2 2 9 3/2
At = B fp - kY
N vz 2
)

To see this we substitute for the vertical depth

9 9 1/2

z = l—vt cos B = %—vt0 1 - k Z
4w

and obtain

2h2 h2k2
AtN = 5 -
v t0 2w tO
= Atn + Atd

where Atn is the normal moveout and Atd the dip moveout (Figure 10).

The amplitude component is also interesting:

1/2

Lik,w) = - | SR T
where YY" = ZFO' + (1/4)(FO"Rh2). We drop the second order term to obtain
2 2 3/2
Yoo - 2vz 1 - kv
x m 5

4w
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and hence,

1/2

L(k,w) = -2(”—‘” ] - BV e~tm/4
vz 2
4w
The point of interest in the above is the dip component cos3/26 which

is incorrectly absent in the case of the exploding reflector model. This
dip-dependence arises as the use of the double square root equation
actually traces the ray path from source to reflector and then up

to the receiver. Although such dip-dependence is to be expected, it
should be remembered that the double square root equation corresponds

to a downward-continuation operator and consequently becomes the identity
operator at z = 0 (Claerbout, SEP-14, "Downward Continuing Constant
Offset Sections a Paradox and Four Guesses'). This indicates a built-in
directionality, and consequently the above dip-dependence may be stronger

than required.

A
We now return to the ray-trace expression for Kh and derive
corresponding expressions for all h wunder the assumption that k is

small. This produces a 15-degree operator for constant offset sections:

2\1/2
1 +-57!
> L 2w 1 3y h 2 4
Kh T Ty z2 1/2 + 4w Z2 k™ + 00k )
1+ z_
2 n2
The phase component now yields the operator
M(z,k,h,w) = exp(Z¥) = exp(iwAtM )
with the migration moveout given by
2 2 2,3/2
AL = g_(zz + h2)1/2 _k'v(h” + 2z7) + 0(k4)
M v 4w222

Inspection of the above expression shows that at large offsets
2
and small =z this operator has a large spatial frequency k

component: this corresponds to the fact that the traveltime curves on
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high offset sections are flat over the horizontal interval between

the shot/geophone pair and then proceed to rapidly curve away (Figure 12),
and also explains the poor behavior of the smear stack when =z << f, as
in the case of the top reflector of Figure 9. Further, it is interesting
to note that (neglecting amplitudes)

R = 3V
Z Z

2w _ k2v
2\1/2 4w
LTy

Z

]

v

To tie in with the exploding reflector model, we introduce the pseudo-

(1/2)v, so that

velocity ¢

>

1l
—
+

|
it

1

We have therefore managed to transform the original equation
for kz expressed in terms of the normalized wavenumber H 1into one
(for ﬁz) involving the half-offset h. This gives a useful starting
point for Devilish-type operators (Claerbout, Yilmaz, this report). The
above equations have been derived in terms of the vertical depth =z
and therefore correspond to modeling. To obtain the migration forms,

we simply substitute 2z = (1/2)vt0 cos B.

Layered media

The previous discussion has been in the context of a constant
velocity medium. We will now return to the double square root equation

and extend the formulation to deal with a layered earth. 1In this case,

2 1/2 2 1/2
w 1 2 W 1 2
k= —-———--—(k—kh>} +[ _f(k-'-kh)}

VZ(Z) 2 VZ(Z)

and the corresponding ''telescope" transfer function

exp(%kzz)
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z
becomes exp J[ kz dg
0

The Green's function now takes the form

e Z 2 1/2 2 1/2
_zf expif {[w—z—(k—k)z] + %—kz) }dc
—c0 0 v s v S
- ksh + (k - ks)h dks = =2 f_m exp[i‘P(ks)]dks

We again apply the principle of stationary phase and use the functions:

z
Flk) = f > iz 463 V= vu(;Z)
0 (1 -Vv7k)
Z 1 2.2 1/2
G(k) = f = (1 - VvVk") dg
V
0
so that G'(k) = -F(k), where F(k) is still the horizontal projection

of the ray path (Grant and West, 1965, p. 133). If we assume small h,
then from the Taylor expansion, applied to the stationary phase result,

we obtain to fourth order

3 1
. om h7F,
K, ~ -5t

4
'
0 3(FO )

for the side-ways migration operator, and hence

4
2 hF"I
Yy o= 20+ __ O 4 omH

F .
0 12(F0 )

for the corresponding phase function, which in turn defines a total

migration moveout of

"t
26, n2 w4 Fo

M w wF 12w

At
4
1
0 (FO )

]
+

il
>
ot

8
+
[
rt
=2
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This formula is the main result of the paper and allows the migration
and modeling of non-zero-offset sections. The migration moveout for

zero offset is once more Atm:

2 2 2
o)
2G z - 4 2
C
m w 0 v(Z)

_ 2 cos 0(7)
} Zfo o ®

The corresponding expression for the normal and dip moveouts is

4 mne
N ~ h2 h FO
= - -
N 0F, 12w(FO')"
where
P - ;J’Zvdc _ lj’z v(2) dz
0 w 0 c0836 w 0 (1 _ kzvz(c))B/z
b4y
and
" - 3 z V3(5 - 4C0826)
Foo = 73 a
w 0 cos' B
2 2
Gy |1+ e
3 z w2
= 3 PRV
w 0 (1 kv (C))
2 v
4oy

The sideways continuation operator may now be written as

z 3. _ 2
wh3f v (5 4cos 0) dc
0

~ 2hw cos79
K = - + Z
z v z v
0 \cos™® 0 ‘cos™6
Notice that, for larger v(z), F.' is limited for an ever-decreasing range

0
of k's so that Kh is eventually non-zero for only the lowest wave-

numbers. For small k we in fact obtain
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F|=lfzzi€_=}.ft0_vz_iz_
0 w 0 cos3e w 0 2c0326
v 2 t 274
~ _rms 0 1+ kv
2w 2 2
IANIRY
rms
The total normal moveout therefore becomes
N T wF.'" 7 2 2 2
0 v t L v
rms O rms
2 2.2
= 2h _h k M2
Voms : 20 tO
0
where
— t t
v4=11:—f0v4dt; va2=11:—f0v2dt
0 Jo r o Jo
and
A
V.
A
v
rms

We therefore see that the smear-stack approach also holds in layered media

albeit with a different interpretation of the terms.

So far we have sought approximate analytical solutions to the

ray trace equation

2h

F[%(k—f(h)] -F[%(k+f<h)]

2 5 a

) fz (k - ﬁh)v(c) (k + ﬁh)v(z:)
0 V@ - )27 V(@) (e + &)
1 - h 1 - -

A

where v(z) v(z)/w. Besides actually determining the Green's function

as a convolution, we could also attempt a numerical solutien of the above
A

equation for Kh' For this purpose it is rewritten as
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Z
f Q[Eak9K-h(Z)] dz = 2h
0

and differentiation with respect to =z gives us

dﬁh z

oQ
— dg +Q = 0
dz 0 BE

or

~

dk, 9

dz z
f Q' dg
0]

We now solve the above equation at each level by, say, an.iterative ray

A
tracing method for Kh. Such numerical techniques would have to be used

in the presence of lateral velocity variations.

Further geometric optics: Changing offsets

In the first section an approximate smear operator was derived for
mapping constant offset sections to zero offset. We will now follow a

similar argument to derive the operator required for transferring from

one offset h1 to another hz.

hl h1 G

S
—0- P Xy

v,

Let the elliptical reflector corresponding to an impulse on the constant
offset time section with half-offset h; be given by

_ , ) _ 2 2.1/2
z, = b1 sin ¢l, X, = (b1 + h1 ) cos ¢1
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Each point (Xl’zl) on ellipse E1 is now replaced by a tangential

ellipse E2 which corresponds to a half-offset h2 and whose center

is displaced to xO:

z = b2 sin ¢2 ;

As P is common to both ellipses:

b, sin ¢, = b, sin ¢, (1)

and

1/2 2 2,1/2

2 2 _
(b, +h,) cos ¢2 + X, = (bl + h1 )

5 9 cos ¢l (2)

whilst tangency gives

2 + hl2)1/2 (b22 + h22)1/2
tan ¢
bl 1 b2

tan ¢2 (3)

We first eliminate ¢2 between (1) and (2) and obtain an equation for

b2 of which the required root is

B + [B2 + 4(b 2 +h 2)h 2b 2cos2<1> ]1/2
b _ 1 177271 1

2 2

2
Z(b1 + h1 )

where

B = b + b 2h 2 sin2 ¢1
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and from (2):

2 2.1/2 2 2.1/2
x. = (b + h1 ) / cos ¢1 - (b2 + h2 ) / cos ¢2

0 1

But from (1):

b22 sin2¢1\1/2
cos ¢, = 1 - ——
2 o2 }
1
Hence, x) = (bl2 + h12)1/2 cos ¢1 - %I-[(bzz + hzz)(bl2 - b22 sin2¢1)]1/2
V1 y(c)
The above equations can now be used
to define a smear operator by virtue
— t(c) of which each point at (yl’tl) on
the section with offset h1 is
smeared over the parametric curve
[y(c), t(e), |c] < 1] centered at
vy (c ¥ cos ¢1) and defined
according to
y(e) = y, +x,(c)
t(e) = %(bzz(c) + 7|2

2

with b defined as above, and b 1"

2 2 2
2 = vty /4 - h

1

It is now possible to formulate an operator which maps the section
with offset £ to the next lower offset f - Af and therefore
max max
allows these two sections to be stacked. This step is now repeated up to
zero offset, thus producing a "sideways migration." The velocity model
may be defined en route according to that which gives the best stack at

each stage.
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At

At

APPENDIX I - Definitions and Notation

Two-way traveltime as read down trace on a raw gather

t =tg + t,. This is the time as given by the real space
line integral along a curve defined to follow the ray path
from a shot S to a reflector/diffractor point P and then
up to the geophone G.

t for a constant offset gather, with half-offset h.

Two-way traveltime for zero offset tO2 X th2 - f2/v

Traveltime from shot to reflector/diffractor.

2

Traveltime from geophone to reflector/diffractor.

Vertical two-way traveltime: as read off a migrated section.
One-way vertical traveltime = (l/2)tz.

True velocity of medium.

Half-velocity of medium = (1/2)v. TUsed in formulating
"exploding reflector" equations.

Horizontal coordinate as measured along a seismic line. Also
the horizontal coordinate of a zero-offset section.

The horizontal coordinates of the shot, geophone respectively.
Midpoint coordinate y = (1/2)(xS + Xg)
Full offset =x_ - x

g s
Half-offset = (1/2)f.

Total migration moveout to be used in mapping from a common
offset gather to a migrated section. This mapping may be
symbolically written (y,t) - (x,tz), Tt can be thought of as
the offset, time, position and velocity-dependent shift
required when performing the appropriate smear-stacks. In
the transform domain, it takes the form M = exp(iwAtM).

The moveout appropriate to the migration of zero-offset
section =~ 2z(1 - k2v2/4w2)1/2/v.

. . . - 2 2
Normal moveout (ignoring dip) =~ £7/2v't

Dip moveout = 2h2 sinza/vzt

0

th 2/2tOw2

0;
Total normal moveout (with dip) = Atn + Atd

Horizontal wavenumbers associated with shot and geophone
positions, respectively.
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ky Wavenumber associated with midpoint coordinate ky = kS + kg.
kh Wavenumber associated with half-offset coordinate kh = kg - ks.
kz Vertical wavenumber.
k Used for ky in the ky’h domain.
R ,A ,ﬁ Functions which map the corresponding wavenumbers into the
s z p p

h,k domain. Defined via the stationary phase equations.

o Angle of dip of planar reflector element. The normally
reflected ray adopts the wavenumber k = w sin a/v.

Y sY Angles of emergence from shot and geophone positions
respectively. sin Ys = ksv/w; sin Yg = kyv/w.

§) Angle of emergence from a coincident shot/geophone pair in
zero-offset two-way traveltime geometry: sin 6 = kv/2w.

F.T Used for "the Fourier Transform of."

F(k) The horizontal projection of the distance traversed by a ray
with associated wavenumber k (Snell parameter p = k/w).

V2k2
z A 2
O f vg;)zplc/lg = f 77 ©
0 (1 -vpY) 0 (l _V'k
2
w
F, Used for F[(1/2)k]: the zero-offset result.
G(k) Allied to Atm.
z 2k2 1/2
G(k) = f 81 - X dz 3 F(k) = -G'(k)
v 2
0 w
GO Used for GL(1/2)k].
X Extremum of the smear operator which maps to zero offset;

= £2
X £ /2vth.



- ] -—--—__;0197! by NEA, Inc., TM. Wgs-mw T

<ORRECT,
— ERNE, BoT '
ANTICLIMACTIG.

HEN
g
My

Twres Y-




