IMPLEMENTATION OF THE DEVIATION OPERATOR

Ozdogan Yilmaz and Jon F. Claerbout

The deviation operator (Dev) is defined as the error made in
separating the double square root operator (DS) (see Claerbout and
Yilmaz, this report). A second order approximation to the deviation
operator yields an equation that can easily be implemented. Conventional
data processing can be considerably improved by applying this operator
to common offset sections prior to NMO correction. The process tends
to correct for dipping events; thus, together with the NMO, each common
offset section is more accurately mapped onto a zero-offset section.
Models of point scatterers at different depths in (a) a constant
velocity medium and (b) a medium with vertically varying velocity were
used to test the deviation operator. Results indicate that, following
the application of the deviation operator, the success of imaging common

offset sections is comparable to that of zero-offset sections.

Background

Conventional data processing utilizes the separable form of the
double square root operator. Theoretical analysis of the error involved
in separation is made in another paper by Claerbout and Yilmaz, in this
report. The error is formally defined as the difference between the

double square root operator and its separable form

Dev(Y,H) = DS(Y,H) - Sep(Y,H) (1)

where H is some estimate of H. The operator Sep(Y,H) contains two

parts: one is a zero-dip, NMO-type operator, and the other is a zero-
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offset migration operator. As a matter of fact, what we just described

is conventional processing. The zero-dip assumption can be relaxed

by applying the deviation operator Dev(Y,ﬁ) prior to Sep(Y,H).

Let us now have a closer look at the deviation operator.

Making all the relevant substitutions, (1) takes the form

Dev(y, i) = [1- (v -2+ 1 - x+ m2t/2
ol -2 e a-8H?r 2)
Equation (2) is rather formidable, and besides, a second order
approximation in dip would suffice for the accuracy required. As
derived in the previous paper, the approximate deviation operator is
Dev(¥,8) = [1- (1 - ﬁz)'3/2] v? (3)
A further consideration that comes up is an estimate for ﬁ.
What we would really like to do is to apply the operator given by
(3) to each common offset section, independently. In fact, a suitable
choice for H is
A = v2h . 4)
RMS

where h d4s the surface offset and ¢t

is the observation time, also
measured from the surface.

Equation (4) is derived from ray-theoretical

considerations (Claerbout, SEP-15, pp. 57-71). Substituting (4) into

(3) and incorporating the missing factor -w/v, we get

v
Z L v (5a)

where
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2}—3/2 (5b)

Notice that (5a) is in the form of the retarded 15-degree approximation
to the zero-offset migration equation. The difference is that the
extrapolation velocity in (5a) is not the medium velocity but the one
defined by (5b). Moreover, since ﬁ is the sine of offset angle

(ﬁ < 1), the factor multiplying Vint in (5b) is a negative quantity.

Keeping this in mind, the corresponding partial differential equation is

v ~
ZP R v <0 (6)

Finally, referring to (5b), v can be considered as the velocity of

propagation adjusted for offset.

Our old friend, the 15-~degree computational star, can be used
if Vint is changed to V. The t-outer algorithm was used in the

present analysis for two reasons: (a) less memory is required, and
A

(b) more important, H 1is constant along the extrapolation path

t = const.

Equation (6) can also be used for the case of a medium with a

velocity varying vertically. It is convenient, however, to make the

T = 2 f___d—z... (7)
v,
int

conversion

which yields

P , <o (8)

)

PTt

where
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The output from (8) is collected along the diagomal T = t. Care

should be given to the fact that Vi = vint(T) and VeMs = VRMS(t)'

A final consideration is that Equation (8) has a pole at

t = 2h/v which seems worrisome. However, we may stop the extra-

RMS’
polation at this time for two reasons: (a) angles become large so that
our equation does not handle them properly; and (b) non-zero data for

t < Zh/vRM would not fit a wave propagation model.

S

Model experiments

Common offset sections with h =0 and h = 400 m (Figures
2a,b and 6a,b) were computed via ray-path integral equations over a
medium with constant velocity (Figure 1) and a medium with velocity
varying vertically (Figure 5). Non-zero-offset sections, after being
processed by the deviation operator (Dev), are shown in Figures 3 and
7. A practical test of the effect of the Dev process would be to
migrate the non-zero-offset sections and compare the results with the
migrated zero-offset sections. Figures 4a,b,c and 8a,b,c clearly
demonstrate the superior results obtained from the processing sequence
that includes the Dev operator. Here, we used the 1l5-degree migration
scheme for the sake of convenience. Certainly, other schemes, such as
the 45-degree or the f-k;, can be used for better imaging. It is
instructive to note that no dip filtering was done during migration,

so that the Dev process can be analyzed in an unbiased fashion.

Conclusions

We have demonstrated the improvement of the conventional
processing by the deviation operator. As for the computational cost,
it is no different from the 15-degree differencing star. 1In fact, it is
apparent that the Dev operator does less to the data than the zero-
offset 15-degree migration operator. Therefore, computational cost can
be reduced considerably by extrapolating with a small number of z-steps.
While going up the section, this number can be gradually increased,

thus necessitating some kind of interpolation. Results of the experiments
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with variable =z~steps (as a function of t) are shown in Figures 9 and 10.

As to the placement of the Dev process in the conventional processing

flow diagram, it should be applied before NMO, since the conventional NMO
is based on a zero-dip assumption.
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FIGURE 1.--Constant velocity model
point scatterers buried at depths between
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FIGURE 5.--Variable velocity v(z)

scatterers buried at depths between
velocities as a function of traveltime.
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