TWO-DIMENSTIONAL FOURIER TRANSFORMS WITHOUT TRANSPOSING

Robert Clayton

The chief computational cost of F-K migration methods is the
calculation of the two-dimensional Fourier transforms. Usually, the
data matrix is too large to reside entirely in core memory, thus necessi-
tating the swapping of data between disk and memory. The most direct
method of computing the two-dimensional fast Fourier transform for large

matrices is:

1) Fourier transform over each of the columns of the matrix by
reading a column from the disk, performing a one-dimensional

FFT, and writing it back to the disk.

2) TFourier transform over the rows of the matrix by:
a) transposing the matrix;
b) one-dimensional FFT over the columns of the transposed
matrix as in step 1;

c) 1inverse transpose the matrix.

The matrix transpose is the most time-consuming part of this method, and
it also has the disadvantage of requiring two extra disk files, each the
size of the original matrix. In this report, a simple two-dimensional FFT
is presented, which eliminates the transposes from step 2 of the above
method. The method allows the Fourier transform to be done "in place,"

thus eliminating the extra disk files.

The essential idea of the method for the row FFT's is to consider
the columns of the matrix to be a series of vectors. A single, one-
dimensional FFT is then a special case of the row FFT's, where the vectors
are of length one. Thus, a row FFT algorithm can be constructed from a
one-dimensional FFT by replacing each scalar (or vector length one)
operation with the same operation done over the full length of the column

vectors. For example, the inner loop (or twiddle step) of the one-

dimensional FFT subroutine FORK (Claerbout, 1976, p. 12) is:

do 50 i=m, 1x, istep
ctemp= cw*ex(i+l)
cx(i+l)= cx(i)-ctemp

50 cx(i)= cx(i)+ctempt
In the two~-dimensional FFT, this step would appear as (in pseudo-Fortran):

do 50 i=m, 1x, istep
call read("read (i)-th column of matrix into vector a")
call read('read (i+1)-th column of matrix into vector b")
do 45 k=1, ly
ctemp= cw*b (k)
b(k)= a(k)-ctemp
45 a(k)= a(k)+ctemp
call write("'write vector a into (i)-th column of matrix')

50 call write("write vector b into (i+l)-th column of matrix")

Here, "read" and "write" are input/output routines to move data in and out of
core. If each "scalar'" operation in the one-dimensional FFT algorithm is
modified in a similar fashion, then the required row FFT algorithm is
obtained. To produce a complete two-dimensional FFT, it is also necessary

(as in the first method) to do the one-dimensional FFT's over the columns.

At the end of this report a complete adaptation of subroutine FORK
for two-dimensional FFT's is given. It is included for illustrative purposes

only. The actual program in use at Stanford is coded in a different language.

Further considerations

The row FFT's require logZN passes over the matrix, where N is the
number of columns in the matrix, If four or more column vectors can be held
in core at one time, then the I/0 operations can be considerably reduced
by "unfolding' the innermost loop. That is, instead of basing the
twiddle step on a Fourier transform of length 2, it could be based on lengths
4, 8, or 16, etc. This would eliminate the I/O operations of the intermediate

steps.

The method can be adapted for use with an array processor. The

twiddle step which contains all of the floating point operations could be

micro-coded for the array processor. This would leave only the I/0 operations

for the host computer.

I would like to acknowlege Professor Fabio Rocca for the suggestion

of this method.

nMNMannn

nrnNAYDH

10

20

30

40

subroutine fork2d(mfile, 1x,1ly,signx,signy,a.b)
complex a(lx), b(lx)

mfile- input matrix file number

1x- length of columns (fastest dimension).
ly~- length of rows (slowest dimension).
signx-— sign of x—tranform.

signy-— sign of y—tranform.

complex cw, ctemp. carg, cexp
sc= sqrt(1. 0/1y)

do the column FFTs

do 95 =1, 1luy

call iread{mfile,a, j, 1x)
call fork(a,lx,signx)

do 4 k=1, 1x

al{k)= al(k)#sc

call iwrite(mfile,a, j,1x)

do the row FFTs

do the bit reverse ordering of the data.
=1

do 30 i=1, 1y

if(i.gt. 3) goto 10

call iread(mfile,a: j, 1x)
call iread{(mfile, b, i, 1x)
call iwrite(mfile,b, j, 1x)
call iwrite(mfile,a, i, 1x)
m= ly/2

if(j4.le.m) goto 30
J=Jm

m= m/2

if{m. ge. 1) goto 20

J= J+m

1=1

istep= 2%l

do 50 m=1, 1

carg= (0.,1.)#(3. 14159265%¥signy#*(m-1))/1
cw= cexplcarg)

c twiddle step
do 50 i=m, ly, istep
call iread(mfile.a,i,1lx)
call iread(mfile,b, i+1, 1x)
do 45 k=1, 1x
ctemp= cuwib (k)
b{k)= al(k) —ctemp

45 alk)= a(k) +ctemp
call iwrite{(mfile,a,i,1lx)
S50 call iwrite(mfile, b, i+1,1x)
= jistep
if(l.1t. 1y) goto 40
return
end
c

subroutine iread(mfile, vec, irow lvec)
complex vec(lvec)

C
¢ rtead in the irow row from matrix.
C
len= (irow-1)#lvec#B
iseek= uvseek(mfile, len.O)
nread= uread(mfile, vec: lvec*8)
return
end
€
subroutine iwrite(mfile,vec, irow, lvec)
complex vec{lvec)
c
t write out the irow row of matrix.
C

len= (irow-1)#lvec#8

iseek= useek(mfile, len, O)
nwrite= vwrite(mfile, vec, lvec#8)
return

end

REFERENCES

CLAERBOUT, J. F. (1976), Fundamentals of Geophysical Data Processing
(New York: McGraw-Hill).

