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AN EXACT FACTORIZATION OF THE ELASTIC WAVE EQUATION

Robert Clayton and Jon F. Claerbout

In previous SEP reports several approximate forms of the one-way
elastic displacement wave equation were derived. One gap in the theory,
however, was the lack of an exact one-way operator. In this paper such an

operator is derived.

The analogy of this result for the scalar wave equation is the square

root operator for one-way waves
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In scalar theory, rational approximations of the dispersion relation for
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exact one-way waves relate directly to the differential operators via a
Fourier transform. In elastic theory, the situation is not as simple because
the dispersion relations do not specify the differential operators. With an
exact elastic operator available, however, the approximations can be made

directly to it.

In the last section of the paper, some approximations to the exact

operator are discussed.

Derivation of the exact operator

To start, the full elastic displacement equation is written in the

form
82 o T 0 o2-g?
+ u +
0 dz —zz LOL2_82 0 | %2
—az 0 1 0
u — ll_ = O (2)
LO B2 —XX 0 1 tt




234

where

horizontal disp.
vertical disp.
and o and B

Fourier transforming in

X, and ¢t,

are the compressional and shear velocities respectively.
Z, and defining Z
the equation becomes

After
kz/w and X = kx/w,
2

0 B

(3)
This equation is now put in the form of a quadratic in Z [defined as B(Z)]
by multiplying by the inverse of the leading coefficient.
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The wave equation in terms of B(Z) is

B(Z) u = O (3)

where g_ is the Fourier transform of u.

wave equation is given by

The dispersion relation for the full

det B(Z)

= 0 (6)
Separating the wave equation into up- and downgoing components amounts
to factoring the polynomial of Equation (4) into the form

B(Z)

(IZ - Cl) (1Z - Au)

(7)
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and

B(z) = (1Iz - Cz) (1z - Ad) (8)
where Au and Ad are the operators for up- and downgoing waves respectively.
The operators Cl and C2 have no special meaning and will be ignored. Note

that C1 # Ad and C2 # Au, because the factors in Equations (7) and (8) do

not commute. The wave equation for upcoming waves is then

(1z - Au)‘g = 0 (9)
and its dispersion relation is

det (IZ - A) = 0 (10)

Similar relations hold for the downgoing waves. In Figure 1, the dispersion
relations for up- and downgoing waves are shown. They are, as one would

expect, semicircles for both P and S waves.

To factor B(Z) into the form of Equation (8), a technique given by
Claerbout (1966) for factoring multichannel time series is used. We will
restrict our attention to the downgoing wave equation, but the results for
upgoing waves follow in an analogous manner. From Cramer's rule for matrix

inverses, we have

B—l _ adj B
det B
or
-1 .
B det B = adj B (1)

Post-multiplying Equation (8) by Equation (11) leads to
det B = (IZ - C2) (1z - Ad) adj B (12)

The determinant of B will be zero whenever we choose Z to lie on the
dispersion relation of the full wave equation. For the modeling of downgoing

waves the appropriate choices of Z are

= [l _ 2 -
zZ = |=-X = Sg (13)
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FIGURE 1.--The dispersion relations of up- and downgoing elastic waves.
The solid semi-circles is the dispersion relation of the downgoing elastic wave
operator. The outer semi-circle (Z = SB) has a radius of 1/B, and represents
downgoing shear waves. The inner solid semi-circle (z = 8y) 1is for compres-
sional waves, and has a radius of 1/o. The dashed semi-circles is the dis-
persion of upgoing waves and also has shear and compressional components.
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and
Z = — - X = S (14)

Whenever the determinant of a 2 x 2 matrix is zero, the adjoint of that
matrix can be factored into the product of a column vector (c¢), and a row
vector (r) (Z.e. the matrix is rank 1). Thus for 2Z = SB’ Equation (12)

reduces to

T

I
o

det B(SB) = (Is, - C2) (18, - Ad) cr (15)

B B

The underscored part of this equation has the form of an eigenproblem, with SB

as an eigenvalue and c¢ as an eigenvector of the matrix Ad. If we had

evaluated the determinant at Z = § then we would obtain another eigenvector

a!
corresponding to the eigenvalue Sa' Knowledge of the eigenvectors and eigen-

values allows us to construct Ad from the decomposition

A, = Qg (16)

where A is a diagonal matrix of the eigenvalues and Q is a matrix whose

columns are the eigenvectors.

Proceeding with the above arguments to find Ad’ we have for Z = SB
! 2 =X )
7% 25
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adj B(s)) = (a” - 8"
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= (a"-B7) @ 8 (17)
X

Hence, the eigenvector corresponding to the eigenvalue S6 is (—SB,X)T-

For Z = Sa we have
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The eigenvector for Su is (X, Sa)T. Finally, constructing Ad from

Equation (16) with

R , q =18 (19)
0 S X S
o o
we have
_1—-5 XS, (S-S )_
1 B2 o B "a "B
I (20)
X 4+ S S 1
o B XSG(SQ_SB) ;E SB
L J

To obtain the upgoing wave equation, the analysis of Equations (16) through

(21) is repeated with eigenvalues of —SB and -S,. The result is
=Ly XS, (S_-S,)
1 B20c B a 7B
Au i (2D
X +8 8 -1
o’ B XSa(Sa-SB) az SB

A comparison of the one-way elastic operators with the scalar operator
(Equation 1), shows the situation is much more complicated for elastic waves.
Part of the complexity is due to the fact that a displacement form of the
elastic wave equation is used. Intuitively one would expect the elastic
operators to decouple into two scalar problems, one for compressional waves,
and one for shear waves. This expectation is true, and the decoupling is

given by Equation (16). The downgoing wave equation is
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(z-o A i = o
or
claz-maa = o0 (22)

With the definition that ¢ = Q é, Equation (22) reduces to two decoupled

scalar problems. The components of ¢ are

I

-S u + XWw (23)

N 5

It

+ \

¢2 X u Sa (24)
Both S, and SB act as vertical wavenumbers and consequently are related to
z-derivatives. The horizontal wavenumber X is related to an =x-derivative.
Consequently, the ¢1 component has the form of curl u or shear waves, and

the ¢2 component has the form of div u or compressional waves.

Approximations of the exact one-way equations

In order to convert the exact one-way elastic operators into differ-
ential equations, it is necessary to approximate them with a rational power
series in X. The most direct method of doing this is to expand each element
in the matrix in a Taylor Series about X = 0. Unlike the scalar case, the
expansion will involve both odd and even powers of X. The fourth order
expansion of Sv where v is either o or 8, is

9 3

v 4
X - 3 X

(25)

[9]
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This expansion is substituted for every square in the operator, and all terms
of X5 or higher are dropped. Note that the expression appearing in the

denominator of the elements is expanded as

1 (26)
2

2
~ af [1 + % (B-a) ’x% - ﬁ%@— (o 2+82-608) x*
X + SaS

8

The resulting approximation for the downgoing operator is
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n
1z - 3 Bx' + o™ (27)
i=0 *
where
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The coefficient matrices BO’ Bl’ and B2 agree with the previous
one-way operators. In Figure 2 a plot of the dispersions of the downgoing
wave operator is shown for various orders (values of n). Note that the
approximations deteriorate as the velocity ratio o/f becomes large. The
results for n = 3 are interesting in that they are worse than the n = 2
results. The best matching dispersion relation is for n = 4. The well-posed-
ness of this operator, however, has not been determined. In scalar theory,
a fourth power Taylor series expansion of the square operator leads to ill-

posed differential equations (Engquist, SEP-8). This provides some moti-

vation for the approximations described next.

In the expansion of Equation (27), one class of terms that are not
present are the terms involving the cross powers of X and Z (Z.e. XZ and
X Z). 1In the time-space domain these terms are derivatives of the type U,
and Yoz The addition of these terms will allow the degree of X in
the approximations to be reduced while retaining the same order of accuracy.

The general form of the new expansion is

P m

T+ ). DX | 2 - Y X+ 0(x™Ptly (28)
i=1 i=0
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To determine the coefficient matrices [Di] and [Ci], Equation (28) is
multiplied by the inverse of the Z-coefficient, and matched term by terms

with Equation (27):

P N-1/ 2
1Z - |1 + ), DX L c.x

1 .

i=1 i=0
m+p

- 1z - ) EX (29)

. 1
i=0

P
E.=C.—ZDE. (30)

B, = C - ), D B ,i=0........ n (31)

For i > m, Ci = 0, and hence the [Dij are determined by the p x p matrix

system

B, = - 2; D By ps i=mloiiii, n (32)

Once the [Di] are determined, the [Ci] are found in a recursive manner

from Equation (31)

Taking for example the case of p =1 and m = 2 (and, consequently,

n = 3), the recursive equations are

By = C,
B, = C, - DB,
(33)
B, = C, - DB,
B, = -DB
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Solving these equations we have

_ -1
D = —B3B2
C = B
0 0 (34)
C1 = Bl + DB0
C2 = B2 + DB1
The coefficient matrices are
0 2 (B-20)
(B—oc)2 °
D, = — — _ (35)
1 (8—20) (a-28) _g (4=28) o
1
0 o-28
¢, = -(B-o)
B-2a 0
B 3 T
_ (B-a)
. (B~20) + B(o=26) 0
€ T 2 3
_ __(B-o)
i 0 (a-28) B2y

The results of this approximation are compared in Figure 3 with the
previous approximation for n = 2. Note that the coefficient matrices are
singular for o = 2B. Hence, only two velocity ratios are presented. The
new approximation appears to be worse and the reason for this is not under-
stood. One possible explanation is that the third order Taylor series
expansion, to which the new approximation was fitted, was the poorest of all

the expansions presented.

The case of including a DZXZZ term but dropping the D1XZ term in
Equation (29) was also tested. The results shown in Figure 4 indicate that
this approximation is also poor. However, at least the coefficient matrices

were not singular.

It is hoped that the inclusion of both DIXZ and DZXZZ terms in
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the expansion of Equation (29) will provide significantly better results.

This should make the order of the approximation XS, but still only involve
up to second differentials in x. The algebra to find the coefficient
matrices of this approximation is straightforward but immense, and has not yet
been done. This equation should be the "45-degree" one-way elastic wave

equation,

The ultimate hope for the approximations of the one-way elastic wave
equation is to find a recursive scheme which generates all higher order
approximations. This would be the equivalent of the Muir-Engquist recursion

for higher order approximations of the scalar wave equation.
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FIGURE 2.--Taylor series expansions of the downgoing elastic wave
equation. In this figure are shown the Taylor series expansions up to fourth
order for four velocity ratios. In each panel only the upper-right quarter
plane of the dispersion relations are shown since the approximations are
symmetric in X. The labels n =2, n =3, n =4, refer to the order of the
expansion displayed. The quarter circles of the exact operator are shown for
reference in each panel.



FIGURE 3.--The dispersion relation of the approximation.
2
(1 + DlX)Z - (CO + C1X + C2X )
The dispersion relation of this operator (labelled D) is shown for two
velocity ratios (the first two cases in Figure 2). TFor reference, the n = 2
case from Figure 2 is repeated. The coefficient matrices in this approximation

are singular at n = 2. The D approximation shown here appears poorer than
the n = 2 case, despite the fact that it is of higher order.
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FIGURE 4.--T'he dispersion relation of the approximation.
(L+D XZ)Z -(C,+CX+¢C X2)
2 0 1 2
This approximation is similar to the case shown in Figure 3, except that the
D,XZ term is replaced with a DZXZZ term. The coefficient matrices are no

longer singular at any velocity ratios but the results are as poor as in the
case in Figure 3.
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