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SPLITTING AND SEPARATION OF DIFFERENTIAL EQUATIONS
WITH APPLICATIONS TO THREE-DIMENSIONAL MIGRATION
AND LATERAL VELOCITY VARIATION

David, Brown

Recently, while Einar Kjartansson, Bert Jacabs and I were working
on a 45-degree equation forward modelling problem, we discovered an
interesting way to 'split" the 45-degree differential operator into two
parts - one that corresponds to a purely propagating or "shifting" term
(much like time retardation) and one that models only the diffraction
effects of the operator. The splitting process is very much like the time
retardation process that has been used for many years, but it has the
advantage of giving uncomplicated equations even with laterally varying
velocity functions. This suggested a very convenient method for doing
either migration or diffraction with the 45-degree equation in regions with
lateral velocity variation. The method is derived in an example in this
paper and has been applied and discussed by Einar Kjartansson in another_
SEP-15 paper.

With some further effort and with the aid of helpful suggestions
by Francis Muir, the splitting technique was generalized in a way that
makes analysis of splitting techniques quite straight-forward, and which,
in addition, sheds some light on the more general problem of separating
differential equations into several parts, each of which may be solved
separately. One example that we will consider is the separation of the
three-dimensional 15-degree migration process into two separate two-
dimensional processes, each of which is applied separately to the data.
This has important implications for making three-dimensional migration an ]

economically attractive processing technique.
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1. The theory

"Splitting" is a technique that was first used as a method for
simplifying the numerical approximation of differential equations in many space-
dimensions. The idea was to reduce, say, a two-dimensional problem to an
alternating sequence of one-dimensional problems, which would then be both
cheaper and easier to code than the original problem. A simple example is
given in Fundamentals of Geophysical Data Processing (Claerbout, 1976), on
page 186. Difference methods are discussed in both Richtmyer and Morton
(1967, Sections 8.7-8.8) and in Mitchell (1969, Sections 2.12-2.15).

In this paper we will consider the "splitting" or separation of the

following problem:

[az - A(x,y,z,ax,ay,at) - B(x,y,z,ax,ay,at)] u = 0, @)
~® < t:x)y < =

with "initial" values u(x,y,t,z=0) = uo(x,y,t). Here we see that A and

B are differential operators that may depend on the operators

3/3x, 3/3y, and 3/3t, and the spatial variables x, y and z. 1In particular,
they do not depend on 3/3z. Also, the problem is a pure initial-value

problem, i.e. there are no boundary conditions.

The solution to this problem at depth z0 may be written as
z
f 0 4z (a+B)
0 ;
U(X,Y,tgzo) = e uo(x’y’t) (2)

where the exponentiation of an operator f dz D is defined by

-

fod) -3

n=0

ex 1
P n!

2 n '
/ dz D) (3)
0

(Kato, 1976, p. 30), and is also an operator,

Now we consider a similar problem in which we have separated the

differential Equation (1) into two parts:
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@,-4u =0 (4)

G.-B o = 0 (5)

with initial conditions ﬁ(x,y,t,O) = ﬁ(x,y,t,ﬁo), i.e. the solution to
Equation (4) at depth 2p. We integrate Equation (5) until depth z, and
and ca}l the resulting solution ﬁ(x,y,t,zo). The question now is, when
will ﬁ(x,y,t,zo) be the same as u(x,y,t,zo) in Equation (2)? To find
out the answer, we write the solution to the problem given by Equations (4)

and (5) in exponential form:

Z V4
/°dzn /odzA
0 0
e e

alx,y,t,2)) = uy(x,3, 8. (6)

Comparing Equations (2a) and (6), we see that 5(x,y,t,zo) = u(x,y,t,zo)
if and only if the operators A and B commute with each other, i.e. if
ABu = BAu for any function wu. This can be proved by expressing

Equations (2) and (6) in their series representation and comparing terms.
Equation (2) becomes

u = {1+ 5dz(a+B) + L [Idz(A+B)]2 + ---}
= {1+ 1dz(a+8) + % [(sdzA)? + (1dzA) (1dzB) + (1dzB)(/dzA)
+ (IdzB)z] + -0} u,

while Equation (6) gives

[1+ sdzB + %5(1dzB)2 + +-.7 [1 + sdzA + %(rdza)2 + +.-] u

[T}
[}

0
= {1+ 1dz(A+B) + % [(1dzA) + 2(1dzB) (JdzA)

+ (IdzB)Z] + o0} u,

Clearly the two expressions can be equivalent only if (sdzB)(jdzA) =
(1dzA) (1dzB). Since neither A nor B depends on 82, this will be
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true if AB = BA.l

The process we have described above 1is not "splitting" but a more
generalized form of splitting that we will call full separation. The impli-
cations of full separation are much broader than those of splitting. From
the arguments above we can see that a fully-separable-initial-value problem
can be solved as two independent initial-value problems.

When the operators A and B do not commute, the problem is not
fully separable. As we will shortly discover, however, if the problem can be
expressed in the same form as Equation (1), it can be "split." We consider
again Equations (1), (4) and (5), with the same initial conditions as before,
but this time we solve each problem only from z=0 to z=Az. The solution
to the full problem [Equation (1)] becomes

u -'{1+[ dz(A+B)+!5[/

while the solution to the separated problem is

Az Az

dz(A+B)]2 - 0(Az3)} 4

0 0

Az Az z

. Az
a = {1 +/ dz(A+B) + X [( / dz)? + 2(f dzn)(f dzA)
0 0 ' 0 0
z
+ (ﬁ dzB)z]'+ O(Az3)] uy
0
The difference in the two solutions is
- Az z z z 3
u-u = 15(/ dzA)(/A dzB) - %(/A dzB) ( dzA) + 0(az”)
0 0 0 0
which is clearly 0(Az2). So if we think of solving the separated problem

1P].ease see the appendix for a more rigorous proof.
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repeatedly for steps of only Az, we will be making an error that is only
O(Azz) at each step. Since typical difference approximations have a
truncation error which is locally O(Azz), we see that such a "splitting"
procedure will not decrease the asymptotic convergence of the method. Bjorn
Engquist has pointed out in SEP-8, p. 153, that this result can be improved
80 as to converge with an asymptotic rate that is O(Az3) by utilizing a —
simple trick. Instead of taking a full step a distance Az with each half of

the splitting procedure, we take a half-step with the first equation —
[Equation (4)], followed by a full step with the second equation

[Equation (5)], followed by a half-step with the first equation again,

For the special case of A and B independent of z, the resulting

solution will be

. A% A AzB é% A
u(Az) = e e e ug (7 B

Writing this out in its Taylor's series form, we discover that
G(az) = [1 + Az(a+B) + A—; (A2+AB+BA+B2) + 0(Az3)]

= u(Az) + 0(azd)

so that the local error of the method is improved to be 0(Az3). Recognizing
that A commutes with itself, or that

we only modify the original method by starting off and finishing off with
a half-z-step instead of a full z-step. Other than the special starting

and finishing procedure, the method is the same as before,

We summarize the results of this section as follows:

The initial-value problem for Equation 1 is fully separable
if and only if the operators A and B commute. If A and B
do not commute, then a splitting method will work and can be
done with an error which is asymptotically 0(Az3).
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Note that it is important that the differential equation under consideration
can be written in the form of Equation (1). We will discover in one of the
examples that not all differential equations of interest can be written that

way. The 45-degree equation in three space-dimensions is one such case.

2. Applications

Three-dimensional migration. The first application we will consider
is three-dimensional migration in a stratified medium. The velocity is hence

only a function of 2z, and so the square root downward continuation equation1
can be written

1 2 tt tt
P = D Wvll - v (2) (axx + ayy) P (8)

where "3'p" 1g shorthand notation for the definite integral

t

J/ dt P for a causal process
t
or / dt P for an anticausal process
oo

The 15-degree approximation to Equation (7) is given by

1 v(z) .t v(z) .t -
(az alre 3t + = axx += ayy) P 0 (9)

We recognize that this is in the form of Equation (1) with

2v(z) at 2 xx and B - 2v(z) at 2 axx

1 v(z) at 1 _v(z t

Since the velocity v is only a function of z, the two operators commute,
and hence the 15-degree three-dimensional migration equation is fully
separable in a stratified mediwm. This means that three-dimensional data can

be downward-continued by first downward-continuing the "inline'" sections with

lIn this equation as in all one-way equations we use for migration, we
have neglected terms which represent transmission coefficient effects in the
z-direction. More information about these missing terms can be gleaned from
various articles by Engquist and Brown in SEP-13 and SEP-14.
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the 15-degree equation, regrouping the downward-continued data into "crossline"
sections and then downward-continuing the crossline sections. The result

obtained will be fully equivalent to simultaneous downward continuation in
both directions.

The 45-degree equation in three dimensions does not fit the same
pattern, however. The 45-degree equation for a stratified earth can be
written:

3v(z t
D G 4ot ) -

3+ v(z) P = 0
z 1 vzgzz tt . .tt (10)
- 4 (axx +a.)
yy

This equation is not in the form of Equation (1) since the denominator of
the differential operator contains both x- and y-derivatives. This
means that the three-dimensional 45-degree equation cannot be split in

the same way that we have been discussing. Instead, we will have to take
another approach. We begin with Equation (7), the square root equation in
three dimensions. Before approximating the square root in terms of the
continued fraction expansions of Muir (see articles by Engquist and
Claerbout in SEP-8), we approximate the square root of a sum by a sum of
Square roots to get the following equation:

1 2. tt 2. tt
az+vat (1-\/1-\:3“ -\/1-vaw) P 0 (11

It is easy to see that when BxxP =0 or any = 0, Equation (10) reduces

to the correct equation. So energy traveling in the inline or crossline
direction is treated properly. Energy traveling at offline angles other

than 90° will not be treated the same way by Equation (11) as by Equation (8),
however. We can get some understanding of the worst case approximation

by comparing the dispersion relations of Equations (8) and (11). The
dispersion relation of Equation (8) is a perfect half-sphere in (k ,ky »k )-
space, while the dispersion relation for Equation (11) is given by

2, 2 v2k 2

—Z . 1. 1 "—-_5- sin“¢ - 1 - ; cosz¢ (12)
w w
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-1 2 2 2
where ¢ = tan (ky/kx) and kr - kx + ky . Equation (12) does the

worst job of approximating a half-sphere when ¢ = 45°, Equation (12)
then becomes

(13)

LY

The important point to make is that for any reasonable approximation of the
square root in Equation (13), the dispersion relation is never worgse than the
paraboloid of revolution corresponding to the dispersion relation for Equation
(9), the three-dimensional, 15-degree equation. 1In fact, it can be shown that
the 45-degree approximation to Equation (11) always has a dispersion relation
which approximates a half-sphere better than does the 15-degree approximation.
In a forthcoming paper, Bert Jacobs will discuss the details of this

quasi-splitting of the three-dimensional 8quare root equation in much greater
detail,

Splitting the 45-degree equation with lateral velocity variation. The
transformation of one-way wave equations to retarded-time coordinate frames has
traditionally been motivated by the desire to separate most of the propagation
or "shifting" effects of the equations from the diffraction effects. We
transform to a frame in which energy traveling straight down in the earth would
be seen as not moving at all —- the shifting is mostly taken up by the time
retardation and only the diffraction effects remain. For a constant or
z-variable velocity medium, this coordinate transformation takes the 45-degree
equation,

2 1

v —
--4—3 Yy P v(a

2
v 14
(3 tt XX 2 tt 4 axx) Pt ( )

and converts it to a simpler equation,
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Qe =% 30 P, = - 3P (15)

which can be easier to solve because the triple-time derivative has been
removed. When the velocity is a function of x as well as z, however,

the resulting equation is not so simple. The equation for a laterally
inhomogeneous medium becomes

v - (1.1 Y 3v-v
C "% 9 P, (v V)Pttt 7 (% ) Prxe (16)

In addition to having the triple-time derivative, which can be
computationally expensive, this equation has coefficients which depend

both on v(x,z) and a constant or z-variable reference velocity, V.

We will take instead another approach to the problem. Rather
than using a coordinate transformation to separate the shifting and the
diffraction effects of the one-way equations, we will use the approach
of Section 1 and separate the equations into a shifting and a diffracting -
part. An equation which is purely shifting is

(G, - —1

z  v(x,z) at) P =0 (17)

We can rewrite Equation (14) to be in the form of Equation (1):

2
3, -,
a__l_ttlo:cx
zZ (v

s, - 13 -1, P = 0 (14')
v v

[ ]

v
dee = 32

The term (1/v)at has been added and then subtracted to make the separation
process clearer.
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where ¢ = tan-l(ky/kx) and krz - kx2 + kyz. Equation (12) does the
worst job of approximating a half-sphere when ¢ = 45°, Equation (12)
then becomes

(13)

[

The important point to make is that for any reasonable approximation of the
square root in Equation (13), the dispersion relation is never worge than the
paraboloid of revolution corresponding to the dispersion relation for Equation
(9), the three-dimensional, 15-degree equation. In fact, it can be shown that
the 45-degree approximation to Equation (11) always has a dispersion relation
which approximates a half-sphere better than does the 15-degree approximation.
In a forthcoming paper, Bert Jacobs will discuss the details of this

quasi-splitting of the three-dimensional square root equation in much greater
detail.

Splitting the 45-degree equation with lateral velocity variation. The
transformation of one-way wave equations to retarded-time coordinate frames has
traditionally been motivated by the desire to separate most of the propagation
or "shifting" effects of the equations from the diffraction effects. We
transform to a frame in which energy traveling straight down in the earth would
be seen as not moving at all -- the shifting is mostly taken up by the time
retardation and only the diffraction effects remain. For a constant or
z-variable velocity medium, this coordinate transformation takes the 45-degree
equation,

2

Y, 3
4

3. ) P

1
© PR Cr S e (14)

tt b o 4 2z t

and converts it to a simpler equation,
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Q=7 3D P, = - 3P (15)

which can be easier to solve because the triple-time derivative has been
removed. When the velocity is a function of x as well as z, however,

the resulting equation is not so simple. The equation for a laterally
inhomogeneous medium becomes

2 3v-v
( v ) Pxxt

(16)
In addition to having the triple-time derivative, which can be
computationally expensive, this equation has coefficients which depend

both on v(x,z) and a constant or z-variable reference velocity, V.

We will take instead another approach to the problem. Rather
than using a coordinate transformation to separate the shifting and the
diffraction effects of the one-way equations, we will use the approach
of Section 1 and separate the equations into a shifting and a diffracting *
part. An equation which 1s purely shifting is

R S
z  v(x,z)

¢] at) P = 0 (17)

We can rewrite Equation (14) to be in the form of Equation (1):

2
Bee ~ 34 axx 1 1
- ..!'. te - - - - - '
3, 3 T, - o? S|P =0 (14')

v
) -7‘—3

tt XX

The term (1/v)at has been added and then subtracted to make the separation
process clearer.
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When we then separate it into two equations like Equations (4) and (5),
one part will be

s L3
1 tt 4 xx 1
3, - 5 ) at + 3 at P 0 (18)
%t "% ¥xx

and the other part will be Equation (17). "Multiplying" through Equation (18)
2
by att - (v /4)axx, it becomes

2
3 _l_S_ZE)_z)_a P = _ﬂ%ﬁlpxx (19)

tt xx z t

Equation (19) is identical to Equation (15), the time-retarded 45-degree
equation, except that the velocity 1s now permitted to be a variable

function of both x and z instead of just a constant or z-variable function.

We now come to the question of how to use the separated equations,
We recall from Section 1 that if the two separated operators commute,
then the equations may be solved independently. In fact, we could forget
Equation (17) altogether and the process would be equivalent (in fact,
exactly the same) to doing the calculation in a retarded frame. The

two operators are

p
and B -va

We see immediately that A and B commute only if v 1is a constant or

a function of z only. When v depends on the lateral variable, x,

as well, then the operators do not commute. The implication of all this

1s that we ean dowmvard-continue using the 45-degree equation in a region



224

with lateral-velocity variation by solving Equations (17) and (13) alternately

at each z-step.

This method turns out to be particularly simple for doing downward-

continuation in the frequency domain. Equation (17) then becomes

which can be solved explicitly to give

. W
-1 — Az
P(z+AZ) - e v P(2)

Thus, the shifting half of the splitting method amounts to a single complex
multiplication. This is the method used by Einar Kjartansson in this SEP report. —

Many people would still like to do their 45~degree migration in a
time~-retarded coordinate system. For instance, they may have already written —
complicated migration routines which, of course, take time retardation into
account when imaging the final migrated section. We will give next a method _
for incorporating lateral velocity effects into the time~retarded problem.
We begin again with Equation (14'), but we separate the operator on the left
side into three parts: .

? - .31’_2. 3 o
l tt 4 XX - _]; " ",
A = v 2 at - at , a "diffract";
e "% ’xx
B = (-1, a "differential shift";
v ¥
1
and C = Z3,., a "constant shift."
v

In a laterally inhomogeneous medium, where v depends on x, A and B

do not commute with each other, The third operator, C, however, depends only
on a constant reference velocity V and the time-derivative, so it commutes
with both A and B. This means we can downward-continue by solving

(3, - AP and (@, - B)P alternately at each z-step but leaving (az - C)P



until the end. We can even leave out this last equation altogether, and
this will be equivalent to time-retarding to the constant reference
velocity V.

Solving the second equation,

1. 1
[az—(;-%)atjr = 0

)

at each step will just cause each trace to be shifted by a small amount
proportional to

1
(=-2)
v Vv
This problem has been discussed in earlier SEP reports for other reasons,

and some helpful information may be found in an article by Philip Schultz
(SEP""7, p. -75) .

3. An example

To further convince ourselves of the validity of the theory of
Section 1, I ran a simple computational example, The heat-flow equation

in two space-dimensions 1is

@G,-3 -3 )u = 0 (20)

This is in the form of Equation (8) with the z-derivative replaced by a
time-derivative. The two operators A = 9. and B = ayy clearly
commute. This means that the equation can be separated and the two
resulting equations solved independently. We solved Equation (20) using
first a Crank-Nicolson splitting method (see Claerbout, 1976, p. 186) and
then solving the problem first in one direction all the way and then in
the other direction all the way using the Crank-Nicolson method both times.

These methods are shown schematically below:
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initiol conditions difference

fully separated equations splitting method

FIGURE 1.--The heat-flow equation was solved using the splitting and
separation methods described in the text, Plots of the initial conditions, -
results, and the difference between the two results are shown here. The scaling
factor used when plotting the difference was .8 x 107° times the scaling factor
used with the two lower plots.



Splitting , Full-Separation
u(0) = initial conditions u(0) = initial conditions
do 30 i=1,nz do 10 i=1l,nz
solve Crank-Nicolson in x solve C-N in x

transpose the result

solve Crank-Nicolson in y 10 continue

transpose the result transpose the result
30 continue . do 20 i=1,nz
plot u(nz) solve C~N in y
end 20 continue

transpose the result
plot u(nz)

end

The advantage of the full-~separation method is apparent -- we have
to do 2*nz transposes of the data in the splitting technique, but
only two transposes in the separation method, For very large data sets,

this can clearly make a massive cost difference.

The results of both methods are shown in Figure 1 for initial data of
two nearby instantaneous heat sources. The two results appear to be virtually
identical, The difference between the two solutions was also calculated
at each point and plotted, but with a different scaling factor; the maximum

-6 times the maximum value of the solution.,

value of the difference is ,8 x 10
For computational purposes, thia is essentially zero. The difference

is probably due mainly to the fact that the boundary conditions for the

two methods are not exactly equivalent. (Recall that the theory was
developed for problems with no boundary conditions. Simultaneous separation
of a differential equation and associated boundary conditi&ns would, in

general, be much more difficult.)
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4. Pitfalls

While we have talked about separating equations into two parts, we
have so far not said anything about the stability of the resulting parts,
It is not necessarily true that if we separate a stable equation into two
parts, the resulting two equations will also be stable for solving as initial
value problems. We still have to check the stability of the new equations

as well,

An example in which a stable equation can be split into two equations
that are not both stable is the following separation of Equation (16), the
time-retarded 45-degree equation, into two parts:

2 —
@, -2 )P, = -%(3""’)?

tt xX v Xxt

and

2

v 1
Cee - 73730 B2 = (2 ttt

-1lyp
v

(These can be made to look like the form of Equations (4) and (5) by

"dividing" through by the operator on the left side of the equations.)

The first equation 1s always stable when Equation (16) 1s, but the second

equation turns out to be unconditionally unstable when solved with initial
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conditions in t and z. In the language of causal positive real
operators (see p. 207 this report), this results from the fact that
while the sum of two CPR's is always a CPR, the difference is not

necessarily a CPR.
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APPENDIX

In the proof that the commutivity of A and B 1is necessary for
eZA o2B . ez(A+B), we glossed over the details somewhat. We showed clearly

why the equality does not hold when A and B do not commute, but we did
not show why commutivity necessarily implies that the equality is valid.

If A and B commute, then we can write the binomial expansion:

P
(a+8)P = kZO F(EWF APk gk | (A1) -

Now, using the definition for exponentiation of an operator, -

ez(A+B) - zP (A.+B)p

—
.-

8

_ Z 5: Zi) p! RS
! k!(p-k)!
pso P =

© ao
- Z 2?_'-‘-“_ Ap Bn

50 &0 n.p.

-} - -]

Z zP P Z 2" n zA zB
- ;T A ;T B =

p=0 n=0

We have used the identity

2: a b = }: Ei a b
p=0 I;) P n p=0 k=0 Pk 'k
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which holds for any a and b regardless of commutivity.

If A and B do not commute, then the binomial expansion,
Equation (Al), becomes

(a+B)P = z‘) <Ap"k,3k) (A2)

where <Am,Bn> means the sum of all possible combinations of A taken
m times and B taken n times and multiplied together. For instance,

(a%,8') = 4% + aBa + BAZ

ez(A.-l-B) zA zB

In this case, it 18 clear that and e e are not necessarily

equivalent.
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