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CAUSAL POSITIVE REAL OPERATORS

David Brown

1. The motivation for causal positive real operators

Consider an initial-value problem for some partial differential

equation, for example,

b5 +AG ,z)Ju = 0 (D
z X

with initial values u(x,z=0) = uo(x) for -» < x< = and z > 0.
The function A(3/3x,x,z) 1is a differential operator that depends on
3/3x but not on 3/dz. We can go about solving this problem by first

Fourier transforming over x and then integrating. Equation (1) becomes’

(3 + Ak ,z)]4 = 0 (2)
z X
The solution to Equation (2) with the initial conditions given above is

z
ﬁ(z,kx) = exp [_J/O A(kx,z) dz] ﬁo(kx) (3)

and so the solution to Equation (1) is

o 1k x z .
u(z,x) = ;—ﬂ/ dkX e ¥ exp [—/ A(kx,z) dz ] uo(kx) )
0

How do we know that (1) is a stable equation for integration in the positive
z direction? We can answer this by looking at Equation (3), which is the

solution to the Fourier transformed problem. If Equation (2) is to be a

lFourier transform conventions:
7k x

o -1k x 17" )
i) = [ axe Fum: w0 = @[ ag e T da)
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stable equation for integration in positive =z, then we must be able to show
that its solutions cannot grow in an unbounded way. For an equation in which
the total energy does not increase, we would like to be able to write an

inequality likel

|lutz,k )] < lluo,k) | (5)
X L2(z) X LZ(Z)

We can see by inspecting Equation (3) that such a bound can be made only for

certain values of A(kx,z). Starting with Equation (3) we have

[z |

Z ~ A
Hexp [—/0 A(kx,z) dz] uo(kx)ll

| A

z ”~ A
exp [-[O A ,2) dz] 1o |l

. < exp [~z min A(k AN a (k)
i, Aem] Hlig0|

Since =z 1is positive and kX can take on any value, then if

ZimlRe A[ = ©
Kk |

which is typically the casez, the inequality of Equation (5) will only hold if

Re [A(kx,z)] > 0, for all values of z > 0 and kx' If Equation (5) holds, then

by Parseval's relation we have also that

ol < lugll ®

2(X,Z) Z(X)Z)

and so Equation (l) will be a stable equation for integration in the positive

z sense as well.

1
The Lz—norms used in this paper are defined by

® 2 . )1/2
u(z) = [u(z)]” 4
@Iy, { [ }

-0

and Ilu(x,z)IILz( ) = {,/. dx}/- dz[u(x,z)]z}l/2
X,2 —00 —00

27 typical example is the heat-flow operator, A= a(z)kxz. Clearly as
kx goes to «, so does A,
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To summarize, we have seen here that the condition for stability of

Equation (1) is that A must be a positive real (or zero) fumetion for all

possible values of =z and kx.

The kind of initial-value problems we deal with in reflection
seismology are typically of a more general nature than the problem we
stated for Equation (l1). Those readers who have programmed a time-domain
migration algorithm will recall that the CDP stack or zero-offset section
to be migrated is used as the initial data for the z-direction but that
initial (or '"final') values in time are also needed for the calculation
(these are typically zero-values -- see Claerbout, 1976, Equation 11-2-6).
So we are interested in problems in which we specify initial values in two

dimensions, for instance 2z and t, instead of just one dimension.

In an article in SEP-8 (p. 48), Bjorn Engquist argues that in order
for a differential equation to be stably integrable in two directions at
the same time, a necessary precondition is that it be integrable in either
one of the two directions separately, the other direction being replaced by
a boundary-value type direction. For some special classes of differential
equations this condition is not just necessary but sufficient as well

(see Kreiss, 1970).

z = t ZM
1. and 2. 3.
sometimes)
t < - t

initial values initial values

initial
values N

T

We have illustrated what we mean in the diagram above. To check the
stability of Problem 1, we check the stability of Problems 2 and 3 separately.
As pointed out above, this is only a necessary condition for stability,

but we believe that for the one-way equations we deal with in migration, it

is also a sufficient condition.

Let us consider a simple example of a problem with initial conditions
in two directions to see how the stability analysis goes. A dependable old

workhorse is the 15~degree equation:



206

1 v _
(th + v att T2 8Xx) u =0 &)

with initial conditions

u(x,t,z=0) = u(x,t)
u(x,t=0,z) = f(x,2)
and ut(x,t=0,z) = g(x,2z)

We will assume furthermore that there are no boundaries in x. The problem
we have just formulated is like Problem 1! in the diagram. We will now formu-

late and check Problems 2 and 3 for stability.

2. same equation
initial conditions u(x,t,z=0) = ug

boundaries: ~» < t < ®©, =—©» < X < ®©

3. same equation

initial conditions: u(x,t=0,z) = f
Ju
5;‘(X,t=0,z) = g
boundaries: —» < z < ®, ~®» < x < ©

Consider first Problem 2. Since there are no boundaries in t or x we can

Fourier transform Equation (7) over both these variables to get

w2 v 2
(—’Z/waz - V_+ “Z—kx)u = 0
The solution is
—A(w,kx)z
a(z) = e U,
where
R " vkx2
A(w’kx) = MY T T2

The function A passes the positive real test since its real part is

identically zero.
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Now consider Problem 3. There are no boundaries in z or x

for this problem so we can Fourier transform over these two variables to get

(att + 1 v kz Bt + ——-kx u = 0 (8)
This is not in a form which looks like Equation (1), but it still has

exponential type solutions,
2 J
u (t’kx,kz) = E: A, e (9
j:

where the coefficients Aj depend on the initial conditions u = f and
u_ = 8. For integration in positive t, the positive real test says that

the real parts of both s; and Sy

. . -st . . . .
Substituting A e into Equation (8) we get an algebraic equation whose

must be non-negative for stability.

roots are s and s

1 2°
2
2 . v 2
s - 7v kz s + 5—-kx = 0 (10)
We get
_ v
S1,2 ~ 2 \t%

and so the real part of both s and s is zero. Hence problem 3 also passes
the positive real test.

Francis Muir has suggested calling operators which pass this double

1

positive real test causal positive real (CPR) operators.” They are called

positive real because when we write a differential equation of the form

[az + A(ax,at)] u = 0 (11)

the Fourier transform of A over x and t must have a positive real
part. They are called causal because all the time-derivatives in Equation (11)
must be realized in a causal fashion in order for the equation to be stable

in t. Claerbout (1976) talks about causal vs. anti-causal realizations of

lIn accordance with the section of Fundamentals of Geophysical Data
Processing (Claerbout, 1976) that begins on p. 32, we might also call these
operators generalized impedance functions.
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(8/81;)_l on page 47 of Fundamentals of Geophysical Data Processing, There we
see that the causality condition is equivalent to requiring that the Laplace
transform of 3/9t have a positive real part, Z.e. at > —1w + |8| rather than
3, > —itw - |e| - (In the arguments about stability for Problem 3 above, s
is actually the Laplace transform of 3/3t.) We will therefore call Bt a

a causal operator if its inverse is causal.

We will close this section with a suggested definition for a CPR
operator: Let I(at) be a differential operator. Then I(Bt) is CPR if
its Fourier transform f(iw) satisfies Re f(iw) > 0 and if solutiomns to
the equation [az + I(Bt)] u = 0 depend only on past values of u. It
should be emphasized that this is not the only possible definition for a CPR

and we may later discover a better one.

2. The rules of combination for CPR's

Perhaps the most useful property of CPR operators is that they can be
combined in several different ways and still preserve their causal positive
real property. We give three of the most useful combinatory rules below
along with a sketch of the proofs.

1) I1 + I2 = 13 Addition: 1Ff Il is CPR and 12 is CPR, then their

sum, I1 + 12, is also CPR. This follows from the

fact that the sum of two positive numbers is positive,

and that the sum of two causal operators is also

causal.

I1) (Il)ml = 12 Inversion: 1If I1 is CPR, then its inverse, (Il)_l
is also CPR. '"PR" follows from the fact that if a
complex number has a positive real part, then its
inverse also has a positive real part. The proof
for causality is a bit more subtle and for now will
be left to the reader. Francis Muir has proved this
for the discrete case.

I1I) al, +b = I, Addition or multiplication with a non-negative real

if a,b > 0 constant: 1f I1 is CPR and a and b are two

non-negative real constants, then aI1 + b 1is also

CPR. This follows because multiplication and
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addition of a complex number with positive real part
with a positive constant will not affect the
sign of the result. The causality will not

be affected since neither a nor b depend on
3/3¢.

3. An example

In SEP-8 (p. 54) Engquist gives Muir's continued fraction expansion for

In slightly different notation it can be written

K 2
X

1
Sj+1 (at) = 3% T 1, s ¢ )
v t jot

I

where sl(at) = (l/v)at, and the Sj [(l/vz)(atz) + kX2]1/2 are progres—
sively higher-order representatives of the square root. It is easy to see

that all of the Sj are CPR's if at is realized in a causal way. The

first approximation, S1 = (1/v)8t is CPR by Rule III, above, since v > 0.

, 1is CPR by Ruée I. Its inversii [(l/v)at + slj 1,
is CPR by Rule II. By Rule III again, k [(1/v)at + slj is CPR since

2 . . 2 -1,
k =~ > 0. Finally, by Rule I, S, = (l/v)at + k [(l/v)at + Sl] is CPR also.

The expression (1/V)8£ + S

Clearly we can replace S1 by Sj and S2 by Sj+1 in the above argument,

and by induction, all of the Sj are CPR.

An interesting fact to note is that while all rational expansions
of [(1/v)at2 + kx2]1/2 are CPR, the square root itself is not. In the
evanescent region, when [w/v| < Ik [, the square root Fourier transforms
to (w/v)(vzklem2 - 1) which cag take on either positive or negative
real values, and so it is not CPR. Another way of expressing this is that
the rational fraction expansion converges to the square root only in the
propagating region. 1In the evanescent region it converges to some harmless

CPR operator that does not affect the stability of the differential equations.



4. Stability of differential equations

Consider again an initial-value problem for the differential equation

[az + A(at)] u = 0

Now suppose A(at) is a CPR operator of order m (i.e. it contains no

(12)

higher derivatives than Bm/Btm). Then we would like to be able to say that

(12) is a stable equation when we integrate in the positive 2z sense.

Suppose we use initial conditions
u(z=0,t) = uO(t), uo(t) =0 for t< O

and

5™
- (z,t=0) = O n=20,1,...,m-1

st

We can solve this problem using Laplace transform methods. We define the

(two-sided) forward Laplace transform of wu(t) by

o

a(s) =/ at e %% u(r) (13)

—c0

and the inverse Laplace transform by

a + g

1 st ~
u(t) = =—= ds e u(s)
I

2T

The integral in Equation (13) will only converge for certain values of Re s.
If u(t) is a two-sided function of t, and if wu(t) 1is an L2 functionl,

we can only be certain that the integral will converge if Re s = 0. However,

H(t)u(t),

if u(t) is one-sided, with u(t) = 0 for t < 0, then u(t)

and Equation (13) becomes

st

u(s) H(t) u(t) e dt

.

u(t) e_St dt

—

0

1
3

lu(t) is called an L, function, if Hu(t)||L = {J[ [u(t)]zdt}
2 o

< 00
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which will converge for all values of s whose real part is non-negative, if
u(t) is in L2' We now return to the problem for Equation (12). It is an
initial-value problem in t as well as z so we can presume that

u(t) = H(t)u(t). If we Laplace transform Equation (12)1, we get

[az +A(s)]u = 0 (15)

since Bt +s and u -+ u. Using the arguments above, this equation is
valid for all s with Re s > 0 since we cannot write a convergent
expression for u otherwise. The solution of Equation (15) can be

written in terms of the Laplace transform of the initial conditions, ﬁo(s):

Az oy (16)

u(s,z) 0

We recover the time-domain solution by inverse Laplace transforming this

result to obtain

o + 7w

u(t,z) = L[ ds &St o A(8)z NO) (17)

211 .
o - 1w

If the integral in Equation (17) converges, this will indicate that the
original equation, (14), is stable for integration in the positive =z

direction. To check the convergence, we will make a change of variables.

Let s = -Zw + a. Then Equation (17) becomes
r.oo . _ 7 _ . .
a(t.z) = '%E.j dy etwE ot 2[ImA(s) Jz o [ReA(s) ]z uO(—tw + ) (18)

Several conditions will have to be met if this integral is to converge.

First of all we need

o]

)/;m dw ﬁO(—iw +a) <

1The result of the Laplace transformation, Equation (15), depends on the
fact that we have chosen zero initial values in time. Non-zero initial values
would give additional forcing terms in Equation (15) and complicate the proof.
We have not looked at this more general problem yet.
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A necessary precondition for this is that GO(~iw + a) < «, For the problem
we are considering, this will be true if o = Re s > 0 for the reasons given
above. This condition, which is a causality condition, also will assure

_(xt —_—
that the term e <, The only other worrisome term is e [Re As) ] Z,

For the integral to converge we need e_[Re A(s) ]z < o for all possible
values of s. This will be guaranteed if Re A(s) > 0. Hence, if A(s)
is a CPR operator, the integral in Equation (18), and therefore in Equation (17),
will converge, implying that Equation (12) is stable for integration in the
positive =z and t directions.

The end result of this section is that we believe that a sufficient

condition for Equation (12) to be stable for integration in the positive t

and z sense is that A(Bt) be a CPR operator.

5. Applications

In Section 3 we showed that the continued fraction expansion of

\/1——82+k2
2 't X
v

always gives an operator which is CPR. The one-way downgoing wave equation of

j-th order can be written
[Bz + Sj (Bt)] u = 0

Since Sj(at) is a CPR operator for any j, this means that all one-way wave
equations derived by using the continued fraction expansions will be stable.
This, of course, is in agreement with the results of Engquist who, in SEP-8
(p. 48ff), went through considerably more complicated arguments to make this

stability proof.
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