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SLANT STACK MIGRATION AND VELOCITY ANALYSIS:
EQUATIONS FOR PROGRAMS

Jon F. Claerbout

In principle exact migration before velocity analysis 1s not
possible. However, in principle velocity analysis can be done simultaneously
with migration so that velocity is determined as it is required for
downward continuation. This is described in SEP-14, pp. 13-15, 73-81.

A more conventional approach is to assume a velocity v(z) and use it for
soveout and migration, then by measuring residual moveout to bootstrap

to a better velocity. This will be done here. SEP researchers have been
unable to provide equations for migrating constant offset sections which
are exact for all offsets and dips (although approximations are found in
FCDP). Luckily, exact equations are easily found for migration of slant
stacked sections. The slant stacks have several other theoretical
sttractions such as the ability, in principle, to migrate and suppress dif-
fracting multiple reflections and the ability to systematically approach

the problem of lateral velocity varilation.

Less grandiose 1s our present objective, namely to provide the
equations required for a bootstrap velocity estimation which will lead to
aigrations and final stacks which are exact for offset and dip angles up to
90 degrees. Since the technology for towing geophone streamers of length L
is obviously much less expensive than for drilling holes to depth L, these
accurate equations should have some utility. Hopefully, their extreme angle
accuracy will be self-evident by improved coherence of fault plane reflections.
Less dramatic but possibly of greater significance in petroleum prospecting
aay be the more accurate determination of velocity which is possible with

these wide angle waves.

We will begin by forgetting about migration and developing the
equation defining the moveout as a function of slant angle which applies to
slant stacks in a layered medium. Then we will get the equation which shows
how residual moveout determines a better velocity. Next we will see how the
sigration equation automatically does the moveout correction along with the
migration. Finally, the migration equation will be expressed in a form in

vhich it is useful for producing migrated time sections.
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A ray trace to predict moveout for slant stacks in stratified media.

Referring to Figure 1 we see the x-t plane and x-z plane interpretation

of the traveltime of a wavefront generated by a surface source moving along the
x-axis with speed 1/p. N
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FIGURE 1l.--An arbitrary stepout p (slope in x-t plane) is chosen tangent
to a hyperbolic arrival. When projected back to zero offset the traveltime t'
is exactly that for the downgoing wavefront in the figure to travel down the -
ray to the reflector and back up to the surface geophone at g. ’

The shot to geophone reflected spherical wave traveltime t exceeds the
Snell wavefront traveltime t' by the time p(g-s) = pf that it takes for the
moving surface source to go from s to g. Thus,
t' =t - pf (1)

For a ray originating at the origin in a stratified medium we have the self-
evident equations.

e =/ tanf dz (2a)
0

z dz
t "/0 v cosb (2b)
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For a wave to go down to the reflector and then return we double (2a) and

(2b) and insert into (1) getting

z
1
U = ————— -
t Z/Odz (v Py p tan® (3)

Using pv = sin6 this reduces to the simple, exact equation for determining

slanted time t' as a function of slant angle P.

z [1 - p2y(z)2] 1/2
t' = Zf dz (4)
0 v(z)

Equation (4) may be used to prepare transparent overlays for data analysis
in much the same way that hyperboloidal overlays are commonly used to
analyze common midpoint gathers. With constant velocity these overlays are
a family of ellipses in the (t',p) plane. Note that opposite to the
familiar situation with hyperboloids the ellipses are narrow when the
velocity is fast and wide when it is slow.

How the time residuals may be used to estimate veloctity

In applied seismogram analysis it is often convenient to avoid
reference to actual depth z whenever a vertical two-way traveltime t can be
used. This is because 1t is more directly measurable. Obviously the

transformation between them is

z dz
T - 2/ (5)
0 v(z)
Using dt/dz from (5) to change variables in Equation (4) we get
T 2, 1241/2
t' = f [1 - pv(r)*°] dt (6)
0

Let us see how to use Equation (6) to bootstrap the veloéity.
Suppose a velocity model v(1) has been found to fit the traveltime of the
j-1 st coherent reflector as a function of p but the model does not yet

fit the j-th reflector. Then subtracting (6) for the true velocity v from (6)
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for the currently estimated velocity v gives

T
st' (p) -j’ 3 - p2v2] Y20 - psy Y2 e oy
T

j-1

where Ty is the vertical incidence traveltime to the j-th interface, and At'(p)

is the observed time t' less the t' predicted by the transparent overlay based

on velocity v. Let v(t) be a constant within the layer and do a perturbation
analysis, say

v = G + Av
Then (7) becomes
o _ o 2. 1/2
At (Tj Tj—l) 53 (1 - p4v¥) _Av (8)
v=y
-p%% av
= (1, -1, ) :
J j-1 noo 1/2
(1 - p“v%)

So the new velocity estimate v is

(1 - 1>2\72)1/2

(t'observed - t'predicted) (9)

where p is taken to be the p at which At' is measured.

How slant migration does moveout correction

The downward continuation operator will not be derived here. (See for
example SEP-14, pp. 59-61.) It is

1/2 1/2
-y - 2 - (Y-H)2
ey i 3 {[1 (YHH)“] + [1 - (Y-H)<] } P (10)



where

vy

Y = (like sine of dip)
- 2w
v kh
H= " (like sine of offset)
w

(11a)

(11b)

and where ky and kh are spatial frequencies in the direction of midpoint

and half offset. Let us now review why it is that slant stacking amounts

to a rejection in P(w,k,) of all frequency components except those for which

P = ky/2u.
Define
heh'=S8-8)
2
t=+t'+ 2ph'
Let

P'(h',t') = P(h,t)

The chain rule for partial differentiation gives

@

P' _ 3P 3h
3n" ah"

t

t oh'

=
Q

P
T " 5h +

(%]
Q
Q

which in the frequency domain is

i kh' P' =1 kh P+ 2p (-1iw) P

Slant stacking is really identical with linear moveout (12b)

(12a)

(12b)

(13)

(l4a)

(14b)

followed by

Fourier analysis and selection of the zero spatial frequency component

kyr = 0. Thus from (11b) and (14b) with k,» = O we see that slant stacking

gives

th
H=

2w

(15)
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At the moment we are not interested in dipping beds so we may set Y = 0,

This plus (15) into (10) yields

1/2
2.2
_dzs -izw(l-Pv)
dz v

P (16)

which integrates to

z 2 241/2 |
[1 - P V(Z) ] dz (17)
0 v(z)

P(z,w) = P(O,w) exp ¢ -1 2 w j(

t
iut representing a

Now let us suppose that the surface observation P(0O,w) is e
single impulsive arrival at time t'. Next Fourier transform the downward

continued wave into the time domain.

-iwt jut' z cosb
P(z,t) = [e wh o gtw exp J-i 2 w/ ~ dz dw
0

' Z cos8
= S (-t +t' -2 )f cosP 4y
0 v

The migrated section is seen at zero travel t = 0. It will be a delta

function at the z value given by

1/2
z 2 2
L - [1 - pSv(z) ]
t 2/0 v(2) dz (18)

which is identical with Equation (4). In a constant velocity medium this
would be for a depth given by combining (5) and (18)

.
r =22 t (19)

a - p2v2)1/2

Thus energy which was at t' has been pushed by migration to a later
time 1 > t' by a cosine division. If the velocity of migration in (19) equals
the velocity of the earth in Equation (6) then the cosine multiplication of



the slant stack (6) is compensated by the cosine division of the migration
(19). The conclusion is that correctly migrated slant stacks show coherent
energy at time t which does not depend on stepout p. If there is observed

residual moveout then velocity may be re-estimated with (9).

Equation for producing migrated time sections

As we sald earlier most data analysts prefer a time section to a
depth section. It preserves the familiar timing relationships of multiple
reflections. It is not distorted by incorrectly estimated velocities.
Beginning with Equation (10), multiplying by dz/dt from (5), and including
(11) we obtain

1/2
E= -1 {? - v 25+ pu )2
|3 1/2
+ Lo - vm? (- pw)E P (20)

This equation is integrated downward where at t = 0 the migrated time
section is given by P(t1,y).



