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SHORT REVIEW OF RETARDED SNELL MIDPOINT COORDINATES

Jon F. Claerbout

A convenient coordinate system in which to formulate many problems of
reflection seismic data processing is the retarded, Snell, common midpoint
system. It is particularly well-adapted to problems of accurate velocity
estimation, migration, and migration before stack when the velocity v(z) is
stratified. It also seems to have some utility in the presence of lateral
velocity variation, but for this problem and the problem of diffracted

multiple reflections, it may be preferable to avoid common midpoint coordinates.

Given the usual definitions of physical variables, the retarded Snell

common midpoint coordinate system is defined by:

z
t' = t - p(g-s) + 2 j[ 3359 dz : (la)
0
y - Bfs aw
h = E—f—— + J/ tan® dz (lc)
0
z 080
T = 2/ 2 dz (1d)
0

Before these equations are actually used all of the trigonometric functions
are eliminated by Snell's law for stratified media, which says that

sin [6(z)] = pv(z), where Snell's parameter p 1s a numerical constant
throughout the analysis. The parameter p characterizes a ray. The
coordinate frame (1) can describe any wavefield in any media, but it is
particularly advantageous in a stratified media of velocity near v(z) for

rays which are roughly parallel to any ray of Snell's parameter p.
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Furthermore, at the earth's surface z = 0, seismic survey data can be put
into this frame merely by numerical choice of p and doing the linear moveout.

No knowledge of velocity v(z) is required.

Equation (1d) defines a transformation from depth z to two-way travel-
time depth T. There is an implied vertical speed of v/cos®. Because the
cosine is in the denominator this is not the vertical speed of the tip of the
ray. It is instead the speed of vertical motion of the intercept between a
wavefront and the =z-axis. This speed, known as the vertical phase velocity,
turns out to be the appropriate time to depth scaling for Snell waves. Note
that the same cosine integral 1t in (1d) also appears in (la) in the definition
of retarded time t'. Another term in the definition of retarded time t' 1is
the term p(g - s), which is known as the linear moveout term. Equation (1b)
is evidently the usual definition of the midpoint between the shot and the
geophone. Equation (lc) defines the surface half-offset h. A peculiar thing
about h is that although it agrees with our usual concept of shot to geophone
offset at the earth's surface, down inside the earth it is modified by the
depth integral of the tangent of the ray angle. Staying at zero offset
g - s =0 where the image is found,we see that h increases with depth by
this velocity-dependent integral. This fact turns out to provide a velocity
determination tool. Recall from the Snell Waves paper the appearance of
linearly moved-out common midpoint gathers. The tops of the skewed hyper-
boloids are shifted to h values which (for primary reflections) increase
with time t'. The location of the tops determines velocity. We will relate
h(z) of Equation (lc) to the h(t') for velocity estimation with experimental

data by examination of the imaging conditions for migration.

Imging conditions

Waves can be described in either (g,s,z,t) physical coordinates or
the newly defined coordinates (y,h,7,t'). In physical coordinates we are
familiar with the idea that reflectors exist wherever echoes arrive at zero

traveltime, namely
t = 0 and g = s (2a,b)

We would like to express these conditions in the Snell coordinates. Inserting

(2) into (la) and (ld) we get what programmers call the stopping condition
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t' = 1 (3a)

Inserting (2b) into (lc) we have dh/dz = tan8 which may be combined with
(1d) to give

dt _ 2 cos@
dh v tané

Eliminate the trig functions with pPv = 8in8 and solve for v2. Then
eliminate t with (3a). We get

v - — (3b)

h

N =] =

1
L

This equation appeared in the Snell Waves paper as a graphical means of
determining the interval velocity from data gathers. Here we have deduced it

from (2b), the idea that reflectors are seen by focused energy at zero offset.

Differential equations and Fourier transforms

The chain rule for partial differentiation glives

[ 7] i T 7
a ?
t e Ve he Te 5,
) t! h
8 g yS g 18 ay
) - ' (4)
8 t 8 ys hs Ts ah
]
aZJ t b4 yz hz TzJ ar

In our usual notation, time derivative at has the Fourier representation
-iw. Likewise, at' goes with -iw' and the spatial derivatives
(3y,3h,31,3g,38,32) are associated with i(ky’kh’kr’kg’ks’kz)' Using these
Fourier variables in the vectors of (4) and differentiating (1) to find the

indicated elements in the matrix of (4), we have
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L 2 L2 ~ 0 tanb 2 v LkT..

Let S be the sine of the takeoff angle at the source and G be the
sine of the emergent angle at the geophone. If velocity v 1is known, these
angles are directly measurable as stepouts on common geophone gathers and
common shot gathers. Likewise, on a constant offset section or a slant stack
observed stepouts relate to a sine like quantity Y, and on a linearly moved- —
out common midpoint gather stepouts measure a sine like quantity H. The

precise definitions of these sine-like quantities are given by

vk vk
S = ‘—S‘ G = ——-—g-
w w
(6)
vk vkh
= —X = —t
¥ o H o
With these definitions (5b) and (5¢) become
G = pv+Y+H = Y+ (H+ pv) (7a)
S = -pv+Y-H = Y- (H+ pv) (7b)

The case of non-slanted coordinates is seen by substituting p = 0 into (7).
From (7) we see that one of the effects of linear moveout is to add a shift
of pv to H. Setting H equal to zero means setting kh equal to zero,
indicating integration over h, which in turn means slant stacking data with
slant angle p. Small values of H/v or kh/m obviously refer to stepouts

near to p.

Double square root equation

The double square root equation 1is

k
z 1 2
-— = - ;‘[(1 - 87)

12, (- gyl
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Using the substitutions (5a,d), (6) and (8) we discover that in the retarded

Snell coordinates the double square root equation is

-k—T- = 1 =~ I A H - _]; 1 - ZPV(H-Y) + (H—Y)2 1/2
w 22 2 2 2
1l -p v 1 - p'v
271/2
+ [1 _ 2pv(H+Y)2+2(H+Y) ] (8)
1 -p'v

Application: Velocity estimation in stratified media (Gonzalez)

Here the idea is to collapse hyperboloids on a common midpoint gather
not to their tops but to that place on their flanks where they attain some
particular stepout p. After this it should be possible to read interval
velocities directly as slopes connecting events on the gathers. To gain
familiarity with the concept we begin by neglecting dip, that is, insert
Y = 0 into the double square root equation (8)

k 21 1/2

_I_ - 1 - __PV_ H - 1 - 2pvH + H (9)
W 22 22
1 -9p7v 1 -p'v

Ordinarily we can migrate a hyperbola top very accurately without knowledge
of velocity because the top has no dip and it does not move. Now we want to
show that (9) is very insensitivé to velocity near stepout = p in (g-s,t):
space or equivalently near H =0 in (h,t') space. This means that we
can downward continue the hyperbola flank in the neighborhood of stepout p
where the velocity information is contained without having to assume that
which we are seeking. Expanding (9) in powers of H we see that coefficients
of Ho and H1 vanish and we get
R e N (10)
w 2(1 - p2v2)
The vanishing of HO and H1 means that data with stepout p do not move
as the downward continuation proceeds. After we obtain some experience with
(9) upon field data the next step is to incorporate some dip. The next non-

zero term in the Taylor Series expansion of (8) about Y =0, H =0 turns

out to be
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2

Y
— 53573 (11)
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Application: Migration of slant stacks (Ottolini)

In non-retarded common midpoint coordinates it is shown elsewhere that

downward continuation of slant stacks proceeds with

dp

s 12 - s - v-ni Yy

Rick Ottolini implemented this with a Stolt-type method (SEP-14, p. 37). To
avoid the difficulty of developing a stretch theory along with the mediocre
results of stretch methods, he recently implemented the above equation in

(z,kt,w) space by what we call the telescope method or Gazdag method.

An approach which will offer other advantages is to use retarded Snell

coordinates. Inserting H = 0 into (8) we obtain

k 21 1/2 2\ 1/2
L 1 1 - -2pvY + Y + 1 2pvY + Y (12)
w 2 2 22
1 -pv 1 -p'v

At the moment I do not believe we have developed any particularly good
wide angle expansions of (12). A splitting method into a sort of S§' and G'

might be the most effective numerical approach.

Application: C(onstant offset section migration with velocity estimation

There are some unresolved fundamental difficulties with the idea of
exact downward continuation of constant offset sections. Approximate equations

are readily found, however. Let us expand the double square root equation (8)

1/2

in powers of H and Y. Using (1 - ¢) =1 - ¢/2 we get a rather poor

approximation, namely

o 1E ey
w 2 2.2
1 -p"v

Equation (10) is also a poor approximation. With a little more effort, taking

1/2 _

instead (1 - ¢) 1 -¢€/2 - 52/8, and keeping terms to Hz and Yz, we
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obtain the better approximation

w 2 2 2,2

(1 -p7v)
Because the operators H2 and Y2 commute we have full separation, a property
described elsewhere in this report by David Brown. Essentially it means that
the migration part, Y2, can be done before the velocity analysis part, Hz.
Furthermore, if H is applied in the offset domain h instead of the
Fourier domain kh’ it means that (13) is a constant offset section migrator.
The basic problem that we have with constant offset section migration is that
the double square root operator is exactly separable into two terms, one
depending only on S, the other only on G, but it is not exactly separable
into a term depending on Y plus a term depending on H. Only crude approxi-
mations can have this separability. The most accurate but still separable
equation that I can devise is the sum of the operators of Equations (9) and

(12). This will be called (don't laugh now) the triple square root equation.

kT PV 2pvH + H2 1/2
-—_ = 2 - H - 1 -
w 2.2 2 2

1 -pv 1 -pv

211/2 211/2
1 -2pvY + Y 2pvY + Y
N I Qipat) 2 A Shd + |1 - (14)
2 22 22
l-pv 1 -pv

This equation is valid for all Y when H =0 and for all H when Y = 0.
In between it errs by cross terms of H2Y2 and higher order. Nonetheless
it may be excellent in practical work for velocity estimation simultaneous

with migration before stack.



