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MINIMUM INFORMATION DECONVOLUTION

Jon F. Claerbout

What is the gimplest earth model consistent with a given
geophysical data set? The conventional definition of simple is implied
by the minimization of power in a filtered earth model. Our present
approach will instead be to define a simple model as one containing little
information. Information will then be defined in either of two ways:
the first is by counting bits, much as a computer memory size is reckoned;
thé second is like Shannon's definition of entropy, the expected logarithm
of inverse probability. We will see that both of these measures of

information emerge directly from the geometric inequality.

Definitions of information

In simplest form the geometric inequality relates the arithmetic

mean of two positive numbers u and u to their geometric mean, namely

1 2
1 1 1/2 1/2
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The inequality becomes an equality if and only if wu, = u,. Repeated

1 2

subdivision of u and u and application of (1) to the subdivisions

1 2
yields a more general inequality:
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where u, > 0 (2)
i 2
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Likewise, in this more general inequality (2), we get equality if and only
if all the u, are identical. The closeness of the uy to one another can
be measured by the closeness of the inequality to an equality. To quantify

this we could form the ratio of the product in (2) to the sum in (2). Clearly
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such a ratio approaches unity as the u, become identical to one another, and

the ratio approaches zero as the u, become more dissimilar.

A slightly more convenient measure is the logarithm of the ratio,

namely S, where

N N
S = In , i u_l/N - In L E: u,
i=1 * =1 *
- 1/N 1
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By this definition S, being the logarithm of a number less than unity, will
always be negative. Maximizing S will drive it toward zero and the u,
toward homogeneity. Minimizing S will drive it toward minus infinity and

the u, apart from one another.

The first application which we will consider will be termed bit count
deconvolution. Let the positive numbers u., to be used in (3), be defined to
be instantaneous power or the envelope of a deconvolved seismogram x_.

t
Instantaneous power is defined by simply squaring X, , say

u = X (4a)

Envelope is defined by first constructing an imaginary part for X, by the

Hilbert transform of the real part. Envelope u, is then defined by

u, = X, X (4b)

A deconvolved seismogram X, is defined by application of a deconvo-
lution filter a, to an observed seismogram Ver Basically, it will be the

deconvolution filter a, that will be adjusted to find a minimum for S.

In most applications there will be many seismograms with a single
deconvolution filter to be used on each of them. The seismograms could be

concatenated into a single Ve vector with a suitable number of zeros
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separating them in such applications. In single channel applications the
filter a, will be constrained to have fewer adjustable parameters than

the data channel has independent values.

An integer K < 2L can be encoded in logzK = L bits of
computer memory. Likewise, K2 is stored in 2L bits of computer memory,
It is an inconsequential choice of scale that S in Equation (3) is written
in terms of natural logarithms rather than binary logarithms. So the first
logarithm term in (3) can be thought of as the scaled information content of
the seismogram envelope. The second term in (3) is the scaled seismogram
energy. We may interpret minimization of S to be minimization of the
amount of bit count information in U, subject to keeping the total

energy constant.

A second definition of information, which is related to
probability theory, will emerge from the geometric inequality if we make

a slightly different definition of u, . Let the seismogram X, be sorted.

That is, by reordering of the time points we may define X(t) from X,
such that

X(t) < X(t+1) all (t) (5)
Now we will define u, by

Y €= D B € (6)

The inequality (5) assures that the u, defined by (6) will be positive as
required by the geometric inequality. [The probability that any u, = 0

could be reduced by defining u for some smoothing

t - Fean) T F(e-m)

parameter M.] Where the x are close together the probability of the

(t)

value x is high, and if the x are wide apart the opposite is true,

(t)
More precisely, if p(x) dx 1is the probability that the value X, lies
between x and x + dx, then l/(Nut) is an estimate p of the

probability density p in the interval between x and x(t). Note

R (t+1)
that I p Ax = 1.

Thus we may think of (3) as

§ = E: 1n L%) - 1n [x

data P

] (7)

(max) X(min)
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But a sum over data estimates an expectation, which in turn is an integral

over probability. So (7) is an estimate of

/(p(x) 1n [—l——i dx - 1n [x( ] (8)

S . -
theoretical p(x) max) X(min)
which, but for the log of the range, is just Shannon's well-known definition

of entropy or expected information.

As before, maximizing S will be smoothing the probability function,
and minimizing S will cause the u, to become dissimilar. Dissimilar u,
means that the probability function has become peaked and/or multimodal. It
is attractive to speculate that one of the basic aspects of well logs, the
"boxy" character, associated with alternation between sand, shale and carbon-
ates, say trimodality, could be imposed upon deconvolved seismograms by
minimization of this Shannon-like form (7) of the geometric inequality. I
have not yet tested this possibility. Up to the present I have been trying
to reconstruct from seismograms the reflectivity function rather than (the
logarithm of) the impedance function. In this application the Shannon
information definition has not yet performed any better than the bit count

definition. The remainder of this paper will confine itself to further

interpretation and details of implementation of bit count deconvolution.

In either case, S(u), defined by Equation (3), deserves a name.
We have seen that the first term can be interpreted as information either
under the definition of u in Equation (4) or the definition in Equation (6).
In either case, the second term in (3) comes from the normalization. I propose
to call S the information density. It is information per unit power in the

case of (4) and information per unit probability in the case of (6).

Descent algorithm

To test these optimization concepts a descent algorithm was devised.
Besides providing a mechanism for testing basic concepts, the descent algorithm
also provides further insight. In particular, it turns out that the force
exerted on the solution by each data point is independent of the smoothed
envelope of the seismogram. This is a practical convenience because it means

the deconvolution may be done before or after a slow gain readjustment. This



remarkable gain insensitivity is not shared by conventional processing such

as least squares filter design. (Gain insensitivity could then be achieved

by post facto introduction of weighting functions.) The
insensitivity of minimum information deconvolution shows
matical definition of information conforms to our common

information.

Let us form some gradients. Take the derivative
density (3) with respect to uj:
38 1 1

_ 1
3u,  Nu, N - Nu, const

J J Z y

natural gain
that our mathe-

sense ideas of

of the information

Next define the uncomnstrained gradient g, as the derivative of the

information density with respect to the conjugate waveform '§£;

38 9S8 9du, 38
g = ——— = — = — X
t < " - t
3Xt j auj th 3ut
= —l—-— const X
gt Nut t

Recall now that the observed seismogram is Vs

(

the deconvolution
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(9

10)

filter is a,, and the deconvolved seismogram is xt, which in this case is

t,
the earth model. Letting * denote convolution,

y*a = x
or

vy % (a+da) = x+ dx
or

y * da = dx

(1

(1

(1

The basic procedure is iterative. From some starting filter a, try to

choose da so that dx dis in the opposite direction of

the unconstrained

la)

1b)

lc)
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gradient 8, given by (10). For convenience da may be chosen to solve

the overdetermined system
dx = y * da = -)g (12)

where A 1is some scalar which has yet to be chosen. The solution to (12) is
given in the usual ways (such as Levinson recursion or smoothing followed by

frequency domain division). It may be roughly indicated by

(7 &
VG

It is on the basis of the numerator of (13) that assertions about gain

da = - (13)

insensitivity have been made. When equilibrivm is attained it will be because
of the vanishing of the crosscorrelation of the observed seismogram Ve with
the unconstrained gradient 8+ Looking back to Equation (10) we see that
g 1is composed of two parts. Use of (12) with only the right-hand term in
the gradient (10), namely

dxt ~ A const X,
shows that the effect of this term is merely to provide a rescaling of the
deconvolved seismogram X . The interesting part of (10) is the left-hand
term l/ut, which is the inverse of the envelope of the deconvolved
seismogram X - To the extent that the filter a, has a short memory
function, it can be said that the envelope of the output X, is (but for a
scale) the same as the envelope of the input V- Combining these ideas we
see that in the calculation of <C§ g> the envelope of the data seismogram
Ve is compensated for by the inverse envelope in the unconstrained gradient
8, Thus we see the qualitative result that minimum entropy deconvolution

is insensitive to slow gain adjustment on the original data.

Achieving convergence

In a non-linear optimization problem like this, it is not easy to
prescribe solution methods which are reasonably economical and still guaranteed
to work for all sensible data sets. All that I have really done so far is to
demonstrate convergence with some single channel synthetic data, where the

starting filter is very far from the final filter. Presumably, with field
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data the descent will be stabilized by the presence of more channels,
and a closer starting filter will be known. On the other hand, the
environment will be sufficiently different that the program presented
here may be far from optimum and may even require some changes (besides

packing many data channels into one vector).

The first parameter choice is for A, the amount of dx to add
‘to x. A sensible choice is to relate X to the relative perturbations

in the output X . That is, A may be chosen to prescribe some ratio

max 2 1/2
dx ~ N (dxt) E: dxt
X " max or 2 (14)
g () L. %t

Typically I begin by choosing the ratio at 30 percent and upon successive
iterations decreasing it exponentially until the resolving power of our
plotting machine is reached. Naturally, if descent is made in a too small
number of steps the lowest minimum is not obtained. A good suggestion by
Will Gray has not yet been tested. It is to develop S in a Taylor Series
in X wup to the quadratic term. Then the minimum value of S as a

function of X is given by the choice Amin = -8'/s".

Another parameter choice in the algorithm is associated with the
desirability of doing some smoothing of the envelope. To show this,
Figure 1 is a plot of a component of the unconstrained gradient g, as

a function of the same component of the deconvolved seismogram.

FIGURE 1.--Plot of equation (10) with (4a)
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A nice thing about this gradient is that for large data values it
becomes linear. This means that a pulse will exert the same force on the
solution whether it is exactly on a mesh point, say §_ , or if instead it is

t
/2.

divided between two mesh points, say (6t + 5t+1

It is clear that the gradient becomes very strong when the data becomes
very small. In fact, simple zero crossings of the seismogram would seem to pre-

sent a problem. The problem is considerably reduced if the envelove definition

u=1Xx 1is used instead of u = x2. This does not totally eliminate the
problem. Consider, for example, packing many seismograms into one vector

with zeros inbetween the seismograms. Clearly the whole method considers them
to be about as important as any other data points. This indicates something
of a contradiction in our problem formulation. On the one hand we believe
information content to be independent of data magnitude, on the other hand

it is convenient to suppose that data less than some threshold magnitude V¥

is noise and may be ignored. It is easy to incorporate VvV into the analysis
by the definition u = X x + V or preserving the scale invariance of S with

x by taking

N
‘é T, x, (15)

[

I
x|
X
+

=)<

But this unfortunately introduces another parameter V which must then be
chosen and can be mischosen. Additionally, I have found it advantageous to

choose VvV large at the beginning and decrease it a bit with each iteration.

Experience has led me to one more stabilizing parameter. The numerator
crosscorrelation in (13), namely ('? g> occasionally misbehaves when large
step sizes A are chosen at the beginning of the descent. 1In practice this
should be stabilized by the existence of more channels and the better starting
solution. What I did to stabilize the synthetic was to taper the cross-—
correlation at early stages of the descent and then reduce the amount of taper

as the solution was approached.

The computer progran

The computer program which follows is structurally like the one in SEP-

13, page 24, 1t uses the same subroutines which are found there. They are not



117

repeated here. On line 30 in function GRAD this program has arbitrarily

defined

of §

u as the average of Equations (4a) and (4b). The numerical values

computed by this program contain little information about the success of

the descent since the parameter v is being changed as the iteration proceeds.

bitcount.f

80
80

150

175
400

17

10

real ryyll28),rygll128)

real x(256),g(256) ,dx(256),4y(128),b(25),a(128),da(128)
call setmod(11,128)

nb=23

ny=1£8

na=101

nam={2%na) /3

nx=ny+na-1

amb=1,./200,

call job(xsny,ysnbsbsnasnams,asambsrmssn)
niter=18

do 400 iter=l,niter

alpha=.3%. 10%%({iter-1.)/niter)

call conviny,y,na,asx)
elog=grad(aliphasnx,xsg)

call scale{-1l.,nx,g)

do 80 i=1,na

ryy(i)=dot (ny-i+1,y,yli))

rygli)=dot (nysy,gli))

do 90 i=1;na

ryg(id=ryg i)/ (l.+(abs(i-nam+.1)¥niter/ (nam¥iter+.1)) %2}
calt fitlna,ryysrugsda)

nskip=1

if{mod(iter-1l,nskip}.ne.0)go to 150

i dy=2

ink=1+(iter-1)/nskip

call plot(ink,idy,100,nx,x)

call plotlink,idy,120+idy%nx,na,a)

call plotlink,idy,140+idy* (nx+na) ,na,da)
cali pilot (ink,idy,160+idy% (nx+na+na) ,nx,g)
continue

ix=(iter-1)%70/nskip+70

iy=0

cal |l number(elog,’ (f10.6)7,ix,iys2,1,9)
call conviny,ys,na,da,dx)

sc=dot (Nx,X,x)/dot (nx,dx,dx)

sc=sqr1t (sc)

do 175 i=1,na

ali)=ali)+da(i)*aipha¥sc

call piotUink,idy,180+idy%2k (nx+na) ,nx,dx)
continue

stop

end

subroutine Jjob(x,nysy,nbsbsnas,nam,a,amb,rmssn)
dimension x(ny),b(nb),ylny),alna)

read (17,17} (b(i),i=1,nb)

format (£5.1)

nx=ny—nb+1

do 10 i=1,nx

x(131=0,

x(1)=1,01

x{nx-1)=.5
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bitcount.f

x {Nx)=-,5

rock=0.
writelll,77) rock
77 format {’preconceived best answer =’ ,f20.8)

call convinx,x,nb,b,sy)

call scalell./bigest(ny,yl)sny,y)
rmssn=sqgrt (dot (ny,y,yl /nyl)/amb
do 38 i=1,ny

38 ylid=yti)+2.%(ranlil, i2)-.5)*amb
writel(1l,78)amb,rmssn

78 format {‘ambient=’;,f8.6," rms s/N=',f7.1)
do 40 i=1,na

40 ati)=0.
al{nam)=1.
return
end

subroutine plotliter,idysishifi,n,p)
dimension pin)

logical*1l m,d,e

data mydse/'m’',’'d ,’e’/

call setmod(8,512)

b=0.
do 10 i=19ﬂ

10 iflabs{pli)).gt.blb=abs(p(i))
do 20 i=1,n

iy=ishift+idyki
Ix=i{ter¥70+p (i) *%45./b+.5
ifliceg-1Iwrite(QIm,ixsiy
write(8)d, ix, iy
fy=iy+idy
writel(8)d,ix, iy

20 continue
return
end
function grad(alphasn,x,g)
dimension x(n),g(n)
complex cx(256) ,con jg

ne56=256
do 5 i1=1,n256
5 ex{1)=0.
do 10 i=1,n
10 ex(i)=x(1)
call fFT[nBSB;CX9+loylo]
nh=n256/2

do 20 i=2,nh
cx ([ 1)=2%cx (i)
20 cx (14nh) =0,

— N
call FF1In256,Cx,-1,1+/N256) w= XX+X
do 30 i=1l,n //’

30 glid=cx(il*con jglex (i} )+x(i)*x (i)

thresh=alpha*bigest (n,g)
do 40 i=1l,n



bitcount.f

40

50

60

glid=x{i)/(glti)+thresh)
pro j=dof (n,g,x)/dot (n,;x,x)
do 50 i=19n
glil=g(i)-pro j¥x(i)
sum=0.,

prod=0,

do B0 i=1l,n

u=cx (i) %con jglcx(i))
sum=sum+u
prod=prod+alog (n¥u)
grad=exp (prod/n} /sum
return

end
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FIGURE 3.-~Increasing the additive noise causes reasonable decrease
in quality of outputs. The same pseudo-random noise was used in each case, but
it was scaled by the parameter "amb."
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< iteration

seed 1

FIGURE 4.--Deconvolved trace as a function of iteration for

seed 2

two different random number generator seeds.



