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THE DOUBLE SQUARE ROOT EQUATION

Jon F. Claerbout

The double square root equation is fundamental to migration. It
seems that all current industrial migration techniques, be they finite
difference, frequency domain, or Kirchoff summation are approximate
implementations of it. It is also a good takeoff point for velocity
analysis, both in stratified media and when the velocity is laterally
variable. The imaging principle most often used in reflection seismology
is that a reflector exists at any place where echoes arrive with zero
traveltime. This, of course, implies that the source and receiver have
zero offset and are located down at the reflector. Thus, to image the earth
it is necessary to mathematically extrapolate both the shots and the
receivers into the earth. The equation which does this is called the double
square root equation. As will be shown, one square root is for downward
extrapolation of the shots, the other is for the geophones. The double
square root equation 1s exact in the sense that there are no error terms
dependent on dip angle, offset angle, or departure of the stratification
velocity v(z) from a constant. Approximations in the development will
suppress multiple reflections ana shear waves and will prevent exact treatment
of horizontal velocity variation. We begin with the scalar wave equation,

which already contains some approximations.
— + — - —=| P =20 (1)
Sinusoidal trial solutions such as

exp (~iwt + ikyx + ik,z) (2)

reduce any linear constant coefficient partial differential equation to its

dispersion relation, which in this case is the equation of a circle
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In normalized form this is
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The Fourier transform variable dual to the z-axis, namely kz’ is the spatial
frequency (inverse wavelength) of the wave along the z-axis and w/v 1is the
spatial frequency along the ray. Simple geometry shows that if 8 is the
angle from the vertical to the ray then Equation (3b) is equivalent to the

trigonometric relation
sin?0 + cos?s = 1 (3c)

Our observations are almost always in the (x,t) plane which we may
double Fourier transform into the (kx,m) plane. Since we never have observa-
tions in (x,2z) space and that is the space in which we are really interested,

we use Equation (3) to solve for k,.

2
k, = +|% -k
z — v2 pe

2 1/2
|

The plus sign is for downgoing waves, and the minus sign is for upgoing waves.
[This meaning of the sign is determined by holding phase constant in (2) and

observing the relation between z and t at constant x. ]

5o our raw data which was given in (x,t) space has been converted to
(kx,w) space by Fourier transform and may now be converted to (kx, kz) space
by (4). Finally we inverse transform to (x,z) space where the migrated
section is seen at zero traveltime t. The method just described is known
as the Stolt method. The goal of the remainder of the paper is to fill in some
essential details, to clarify the role of shot to geophone midpoint and offset,
and to present the equations in such a way as to incorporate velocity stratifi-

cation and migrated time sections.
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First of all consider an upcoming plane wave near the surface of the
earth at some fixed x and t. Either common sense or Equation (2) tells

us that the depth =z dependence of the upcoming pressure field is

-ik,2z w
= Z = - —
P=P e Py exp[-1i 5 cos(8) z] (5)
It may at first seem pointless to do so but any sinusoidal function like (5)
can as well be specified by a differential equation with the sinusoid as a
solution. Thus instead of (5) we could equally write
d

w
o P = -ikP = -1 = cos(8) P (6)

Equation (5) 1is completely incorrect if velocity v 1is z-dependent but

Equation (6) is very accurate. Its solution is

z
_ cosf(z)
P = Py exp | -i w‘/ro ) 4z N

as may be quickly verified by substitution of (7) into (6). The integral in

(7) 1is evaluating the traveltime from the surface to the depth z. Equation (7)
solves both Equation (6), and, if you are willing to neglect the z-derivative
of material properties, it also satisfies the full wave Equation (1). The

full wave Equation (1) controls both up and downgoing waves and their

coupling whereas Equation (6), which is the basis for wave equation migration,

controls only upcoming waves.

Since we envision our surface data being representable in (w,kx)

space it seems appropriate to express (6) with these parameters from (4) instead

of the shorthand cosf.

d po_j8
v

dz 1 -

K, ) 1/2
v
T) i ®)

If we have a continuum of geophones stretched out along the x-axis
then we can have a new philosophical view of (8). Instead of thinking of it
as a downward extrapolation equation for a wave field we can think of it as

a downward extrapolation equation for our geophones. It tells us what data
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would have been recorded if we had buried geophones. Considering both shots
and geophones to be continuously distributed along the x-axis we will have
data not as a function of x but data as a function of both s and g.

These data could be Fourier transformed over space to become a function of

ks and kg. Just as the downward extrapolation of geophones can be achieved
by replacing kx by kg, so can the extrapolation of shots be accomplished by
replacing kx by ks. Moreover, the simultaneous downward extrapolation can

be achieved by adding the phase shifts giving the double square root equation

1 2 1/2

vk 2 /2 vk
4 = -1 Y N e -4 R B
P i3 1 - ) + |1 ( - P 9)

where the first square root is the cosine of the arrival angle of the ray and
the second square root is the cosine of the takeoff angle from the source.
Sometimes I become confused about the signs of the square roots. For example,
since there is a downgoing wave at the shots and an upcoming wave at the
geophones, perhaps the second square roots should have the opposite sign? No,
the signs in (9) are correct. Since traveltime to a deep reflector decreases
[recall discussion after (4)] as the geophones are moved downward, the same

sign on the square root will ensure that it also decreases as the shots are

moved downward.

Next we will convert the shot-geophone double square root Equation (9)
to the midpoint-offset double square root equation. We formally define a
coordinate transformation from (s,g) coordinates to the coordinates of

midpoint y and half-offset h
y = E_Z__S_ (lOa)
g ; S (10b)

Clearly, data as a function of s and g which could be two-dimensionally
Fourier transformed to kg and kg could instead be transformed from (s,g)
space to (y,h) space with (10) and then Fourier transformed to (ky,kh)
space. The question is then, what form would the double square root Equation
(9) take in terms of the spatial frequencies (ky,kh)? Let us define the

seismic data field in either coordinate system as

P(s,g) = P'(y,h) (11)



This introduces a new mathematical function P' with the same physical
meaning as P but, like a computer subroutine or function call, there is a
different subscript look-up procedure if you enter with (y,h) than 1if

you enter with (s,g). Applying the chain rule for partial differentiation
to (11) we get

3P _3y 3P'  3h 3P’
ds 98 0y + s 3 (12a)
9P _ 3y 3P' . dh 3P’
o5 g oy ' ag d (12)
and utilizing (10) in (12), we get
9P 1 3P’ aP'
7s ~ 2 {3y 3 ) (13a)
3P _ 1 (3P'  2aPp'
g - 2 |3y + 3 ) (13b)
In Fourier transform space where 3/9x transforms to iky, Equation
(13), upon canceling the i and canceling P = P', becomes
ke == k (14a)
s 2 (ky - h)
g =2 Uyt

Substituting (14) into (9) we achieve the main purpose of this paper, to get

the double square root migration equation in midpoinf—offset coordinates

) 1/2 9 1/2
vky+vkh) . L (vky—vkh) P (15)

4 p-g 2 1
a v 2w 2w

Equation (15) is the takeoff point for many kinds of common-midpoint
seismogram analyses. Some convenient definitions to simplify its appearance
are

vkg

G = (16a)

w
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vks

S = o (16b)

vy
T (16c)
vk
h
= o (16d)
As noted earlier, the definitions of S and G .are the sines of the takeoff
angle and arrival angle of a ray. When these sines are at their limits of +I
they refer to the steepest possible slopes in (s,t) or (g,t) space.
Similarly, if H = 0, then Y is bounded by +1 [since Y + (H=0) = G = +1].
Thus, the quantities S, G, Y, H are all sine-like and refer to angles from
vertical in the spaces of shot, geophone, midpoint and offset. With these

definitions (15) becomes slightly less cluttered

1/2 1/2
g—z P = —i% [1 - (Y+H)2] + [1 - (Y—H)zJ P (17)

Simpleminded derivations [such as (8)] fail to consider offset. In
such derivations H 1is simply absent. Setting H = 0 in (17) allows the
two square roots to become identical. It then reduces to (8) except for a
discrepancy factor of 2 in velocity. Equation (17) is actually correct; the
simpleminded derivations usually insert the factor of 2 as a post facto
correction to convert two-way traveltime to one-way time. One-way time is said
to be appropriate because of the "explosive reflectors" imaging concept.
The most widespread use of (17) is on moveout corrected common midpoint stacks.
In this application H 1is almost always absent. One could rationalize setting
H =0 by noting that kh = 0 is the zero spatial frequency component in the
half offset direction. This zero frequency component is just the integration
over offset without moveout correction. 1In old jargon this was called
vertical stack. Thus the greatest contribution would be at the tangency zone
at zero offset. 1In other words, H =0 1is roughly like h = 0 and a common
depth point stack is supposed to push everything into zero offset. Anyway,
supposing that H = 0, the two square roots in (17) become identical and we

get an equation like the single square root Equation (8).
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A final matter is to convert Equation (17) to a form where depth =z
does not explicitly appear and its role is replaced by a variable 1 which

represents the two-way vertical traveltime. We have

dr _ 2

i v (18)

Dividing both sides of (17) by (18) we get the double square root equation
for the migrated time section

1/2 1/2
g—T— P = -1% [1 - (Y+H)2} + [1 - (Y-H)]z P (19)

This equation is integrated down into the earth from the surface T = 0.
The migrated time section at time Tt 1is found at any T at zero offset h

and zero traveltime t.

It is not our present objective to investigate implementations of
(19). It may look as if (19) is in the frequency domain for time and for
all space coordinates. Migration could be done that way. [But inverse
Fourier transformation could be performed on any or all coordinates and the
implementation could be done in a finite difference form. Fundamental
advantages of the finite difference methods are that they extend to
incorporate multiple removal and that horizontal space variation in
velocity and absorption are more readily manageable. A practical advantage
of finite difference over Fourier methods is the absence of periodicity.
A practical advantage of Fourier methods is the ability to work at frequencies
approaching the Nyquist. This is especially an advantage on the horizontal
space axis. In different situations it may be advantageous to work in

(w,y,h) space, (w,y,H)' space, (t,y,H) space or some other composite

space.

The Kirchoff methods may be interpreted in terms of (19) as
follows: On the right side of (19) we see a product of an operator with a
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data field P. This is a product in the ky spatial frequency domain. Such
a product could be expressed as a convolution in the midpoint y domain.
Likewise, the solution to (19) is of the form of Equation (5) or (7) where
there is a product of an exponential with the surface data PO. The

The exponential function of w and ky could be transformed to the time and
midpoint domain. Not surprisingly, the resulting function very closely
resembles a hyperbola in (y,t) space. A convolution of this hyperboloid
along the midpoint axis of the data amounts to the "hyperbola summation'

method of migration.



