SNELL WAVES

Jon P, Claerbout

Reflection seismologists are all familiar with hyperbolic moveout
correction. It is the geometric correction which flattens the reflection
times to horizontal bedding, provided of course that the earth has a
constant, known velocity v. An equation for the correction is

1/2
2,2
' - = 2Dz (0a)
v v
which will be compared to the less familiar equation for linear moveout

correction
t' -t = -px (p = const) (0b)

While hyperbolic moveout may be able to flatten arrival times over a large
portion of a reflection event, with linear moveout only a small portion,
called a patch of the event, will appear flat. The major advantage of
linearly moved out data, as we will see, is that the patches are far more
submissive to further analysis than are the hyperbolically moved out data.
The patches lead to equations for interval velocity determination which are
more accurate and often more sensitive than conventional analysis. The
patches from multiple reflections, even though they do not usually come
from zero offset, satisfy the usual normal incidence relations exactly,
thereby making multiple suppression a more manageable task. It further
turns out that a filter-like process known as slant stack will enhance the
patches for any particular p value and suppress the rest of the data.
When slant stacks are made for many p values then all the information of
the original data is present and the data may be reconstructed from the
slant stacks. Finally, slant stacks simulate waves in the earth. These
waves, called Snell waves, are plane waves in the special case where v(z)
is constant. Although we will not go into the details here, it turns out

that Snell waves have an exact migration theory. Such awkward questions

57



58

as whether to migrate with the stacking velocity, or with the earth velocity,

never arise.

One-dimensionality of stratified media

Snell's law says that when a ray crosses or is reflected at a planar
contact between two materials, the ratio p, equal to the sine of the angle
from ray to perpendicular divided by the material velocity, will be the same
after as before the ray intercepted the contact. Snell's law is so basic that
it applies in elasticity when a compressional wave is converted to a shear wave.
Our discussion will specialize in stratified media, that is, where the velocity

v(z) 4is a function of depth only. Consequently, Snell's parameter

sinf(z)

V(Z) (1)

is a constant function of depth. For a ray traveling from a source to a
receiver the Snell parameter p 1is a constant function of time, even if some
legs of the journey are by shear waves. Being constrained to make our measure-
ments at the surface of the earth, we cannot make any direct observation of
either the material velocity v(z) or the propagation angle 6 but the ratio
(1) will be easily observed. Figure 1 shows that Snell's parameter p is the
inverse of the speed at which the intercept of a wavefront with the earth's

surface moves in the horizontal direction. That is,

sinb - dt 1 (2)

v ‘dx  horiz. speed at z=0

FIGURE 1l.--Plane wave arrival at earth's surface showing that
observation of dt/dx gives Snell's parameter p = (sinf)/v.



The inverse to Snell's parameter p 18 known as the horizontal phase
velocity. For a vertically incident plane wave this velocity is infinity,
As long as the phase veloclity exceeds the material velocity we are
discussing waves. When the phase velocity 1is less than the material
velocity at the surface the disturbances damp out exponentially away from
the surface, and the physical behavior becomes quasi-static deformation.

The intermediate case, surface waves or ground roll, is for phase velocities

in between those of surface material and faster material at depth.

A point source will generate waves in all directions; hence, a
wide continuum of Snell parameters. However, by the time the waves get
to a distant receiver they may appear to be more like planar waves, that
is, more like waves with a fixed numerical value Py To analyze these
received waves we really do not need all the waves which the source gener-
ated at other values of p. To simplify analysis we might ask what sort
of source arrangement would generate only waves of one particular
numerical value of p. What is needed is a continuously active point
source which moves horizontally from x = - to x = 4= at a speed of
1/p [actually, for two-dimensional (x,z) analysis, it would be a line
source along the third dimension y]. In a constant velocity medium the
waves emitted from this source are plane waves with an angle from the
vertical given by sinf = pv. In a stratified medium v(z) the wave~
fronts are no longer planar. Such wavefronts are so central to applied
seismogram analysis in petroleum prospecting that they require a name,
To prevent us from inaccurately referring to these wavefronts as non-

vertically-incident plane waves, 1 propose to call them Snell waves,

Take a surface Snell wave source to have a horizontal phase
velocity po-l. It is easily seen from geometry that the wave disturbance
as seen at any depth z, also moves horizontally at the same speed.

Thus, Snell's law (2) is merely a geometrical consequence of the fact that
the horizontal phase velocity at any one depth must, for stratified

media v(z), equal that at all other depths.

The nice thing about a source of vertically incident plane waves
(p = 0) in a horizontally stratified medium is that the ensuing wave field
will be spatially one-dimensional. In other words, an observation or a

theory for a wave field would be of the form P(z,t)-const(x). What is
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true, but not quite so obvious, is that Snell waves for any particular non-zero

p value are also spatially one-dimensional. That is, with

t' = t- px (3a)
x' = x (3b)
z' = z (3c)

spatial one-dimensionality is given by the statement,
P(x,z,t) = P'(z',t').const(x') (4)

Obviously when an apparently two-dimensional problem can be reduced to one
dimension great conceptual advantages result, to say nothing of computational
economic advantages. Before proceeding, study Equation (4) until you realize
why the wavefield can vary with x but be a constant function of x' when

(3b) says x = x°'.

Equations (3a,b,c) are a coordinate transformation from (x,z,t) space
to (x',z',t') space. Equation 3a is simply a definition of linear moveout.
Other papers by this author have considered more complication coordinate
transformations. (The spatial coordinates could follow the path of a ray and
move at the speed of a front.) In these more advanced papers the readers are
asked to delve into such arcane matters as how to manipulate Fourier transforms
in the (x',z',t') Snell coordinates and how to express the wave equation
and solve it by finite differences in (x',z',t') coordinates. In order to

motivate study of these complicated matters, this paper will establish two

messages:

Velocity estimation megsage. The wide offset traces are most sensitive
to velocity and contain the most valuable information for velocity determin-
ation. A method of analyzing waves in the vicinity of a given Snell parameter
p + dp provides a simple and accurate means of velocity analysis. In
contrast, the familiar power series for traveltime in terms of powers of offset

is completely accurate only at small offsets where it is least sensitive to

velocity!



Multiple reflection message. Simulation of Snell waves (via slant
stack, a method yet to be described) is the only way to use reflection
seismic data in which the familiar vertical incidence timing and amplitude
relations apply to non-zero offset data. Common midpoint stack adds non-
zero offset data into zero offset, but because v(z) ¥ const, it does
so imperfectly and destroys the familiar, normal-incidence timing and
amplitude relationships on the multiple reflections. After a half wave-
length of timing error, predictive multiple suppression has little value.
We will return to this. '

Exact graphical method for interval velocity measurement
Consider a point source. The wavefront after a time t 1is a
circle of radius vt and is given by

vzt2 = x2 + 22

Letting f denote the lateral source-receiver offset and z_, denote the

8
depth to an image source under a horizontal plane layer we have

vit2 = £2 4 (z - 2)? (5)

We make our measurements at the earth's surface where z = 0.

Differentiating (5) with respect to t we obtain

2 af
voat 2f it
f df f
v t dt pt (6)

Figure 2 shows that the three parameters required by (6) to compute the

material velocity are readily measured on a common midpoint gather.

-
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FIGURE 2.--A straight line, drawn tangent to hyperbolic

observations. The slope p of the line is arbitrary and it may be chosen so
that the tangency occurs at a place of good signal-to-noise ratio,

Of course, we can measure some kind of velocity by means of
Equation (6) even if the earth does not have the assumed constant velocity,
The question then becomes, what does the measurement mean? In the case of
a stratified medium v(z) we can quickly establish the answer to be the
familiar RMS, or root-mean-square velocity. To do so, first note that the
bit of energy arriving at the point of tangency has throughout its entire trip
into the earth been propagating with a constant Snell's parameter p. The
best way to specify velocity in a stratified earth is to give it as some
function v(z). Another way is to pick a Snell's parameter p and start
descending into the earth on a ray with this p. As the ray goes into the
earth from the surface z =0 at ¢t = 0, the ray would be moving with a
speed of, say, v'(p,t). It is an elementary exercise to compute v'(p,t)
from v(z) and vice versa. So, when convenient, we may refer to the velocity
as some function v'(p,t). The horizontal distance f which a ray will travel

in time t is given by the time integral of the horizontal component of
velocity, namely

t
f = J[ v'(p,t) sind dt (7)
0



Replacing sin® by pv from (1) and taking the constant P out of the
integral yields

t
f-p/ v2 dt (8)

Inserting (8) into (6) we get

t
2 £ .1 2
Vmeasured pt t ‘// M (9)

which justifies the assertion that

v (10)

v -
measured vroot—mean-square RMS

Equation (9) is exact. It does not involve a "small offset" assumption or

a "straight ray" assumption.

Next let us consider the so-called interval velocity. Figure 3
shows hyperboloidal arrivals from two flat layers where a straight line of
slope p has been constructed tangent to each of the hyperboloids. Both
straight lines are constructed to have the same slope p. Then the tangencies
are measured to have locations (fl,tl) and (f2’t2)' From (8) and (2),

using the subscript 1 to denote the i-th tangency (fi,ti), we have

t
£, 8 . 132 qe (11)
i 4t 0

Assume that the velocity between successive events is a constant v
and subtract (11) with 1 + 1 from (11) with {1 to get

interval

df

2
(i1 7 ) g = (t441 = £ Viierval

12)
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gather tangent to reflections from two plane layers.

FIGURE 3.--Construction of two parallel lines on a common midpoint
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Solving for the interval velocity,

2 i+1

v _ - df
interval t

Fr (13)

f - fi
ty dt

i+l

So the velocity of the material between the i-th and the i+l-st reflectors
can be measured directly by the square root of the product of the two slopes
in (13), which are the dashed and solid straight lines in Figure 3. The
advantage of manually placing straight lines on the data, over automated
analysis, is that you can graphically visualize the semsitivity of the measure-
ment to noise, and you can select the best offsets on the data at which to
make the measurement. When doing this routinely one quickly discovers that
the major part of the effort is in accurately construqting two lines which are
tangent to the events. When this happens, it is convenient to replot the data
with linear moveout t' = t - pf, After replotting, the sloped lines have
become horizontal so that any of the many timing lines can be used. Locating
tangencies is now a question of finding the tops of convex events. This is

depicted in Figure 4. In terms of the time t', Equation (13) becomes

2 11 1 1
Vinterval dt p A’ N P (14)
df af P

Finally, the advantages of the manual technique of interval velocity
determination presented here, compared with the automated hyperbola scan

technique of current industry practice, are:

1) We have made no analytical approximations which deteriorate

with angle.

2) We select that portion of the data (by selecting the p value)
where the data quality is best for the task at hand.

3) Although it is not shown here, it turns out that migration
techniques are available to pre-process the data to remove dip

effects,
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Multiple reflections at non-zero offset

All reflection seismologists are familiar with the timing and amplitude
relations of vertical incidence multiple reflections in layered media. To
establish this along with some notation let us suppose that we have sea floor
two-way traveltime ty with reflection coefficient Cyv Then the n~-th
multiple reflection comes at time nt; with reflection strength c)”.

Suppose we have also a deeper primary reflection at traveltime depth

t, with reflection coefficient Cye Then we expect sea floor peglegs

at time t, + nt; with reflection strengths nczcln (multipled by

some transmission coefficients). These familiar normal incidence
relationships apply to spherical divergence corrected field data

at zero offset, but they do not apply at any other offset. Normal moveout
correction would succeed in restoring the timing relationships in a constant
velocity earth, so we should ask the questions whether in typical land and
marine survey situations v(z) departs so much from constant that residual
time shifts greater than a half-wavelength are routinely involved. No
equations are needed to get the answer. It is generally observed that
conventional common midpoint stacking suppresses multiples because they have
lower velocities than primaries. This observation alone implies that

normal moveout does indeed often time shift multiples a half-wavelength or
more out of the natural zero-offset relationships. As a result, much of the
residual multiple reflection energy left in the stack does not fit the familiar
vertical incidence model. Consgquently, predictive multiple suppression on a
common depthpoint stack can be expected to be an exasperating undertaking. You
can get rid of the vertically incident energy but the remainder will require
least squares coefficients which usually eat up primaries as well as
multiples. With marine data the moveout could be done with water velocity,
but the peglegs still would not fit the normal incident timing relationship.
And the peglegs are often the worst part of the multiple reflection problem.

Advanced research has solved the theoretical problem of prediction
and suppression of multiples for both non-zero offset and for irregular
non-planar reflectors. The trick for the irregular reflectors uses
migration-like techniques which are too complicated to go into here. But
the trick for non-vertical incidence is easy and is related to Snell waves.
This should not be too surprising when you recall from Equation (4) that
a Snell wave source has a response which is a one-dimensional function of

space.
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To see how to relate field data to Snell waves, begin by searching
on a common midpoint gather for all those patches of energy (tangency zones)
where the hyperboloidal arrivals attain some particular numerical value
of slope p = dt/df. These patches of energy seen on our surface
observations each tell us where and when some ray of Snell's parameter p
has hit the surface. Typical geometries and synthetic data are shown in
Figures 5 and 6. The traveltimes for all these arrivals satisfy the familiar
relationships which we associate with vertical incidence. Three minor dif-
ferences between this and the vertical incidence case are: 1) the actual
numerical values for t and t, will change with p because of the
different travel path length; 2) the reflection coefficients ¢ and c

1
will change with p because of the different reflection angle; and 3)

2

the non-vertical incidence case theoretically should involve shear waves but

for various reasons shear waves are very rarely observed.

Given all the patches of constant p on a gather we can predict the
traveltime of multiples by the familiar timing relationships. Unfortunately,
the lateral location of any patch depends upon the velocity model v(z). This
would seem to imply that you need to do velocity estimation at or before the
time that you remove multiples, or that some kind of alternating bootstrap of
velocity estimation along with multiple prediction and suppression is required.
Luckily, the method of slant stacking which is based upon the idea of Snell
waves comes to the rescue and enables us to remove multiple reflections before
velocity estimation. The procedure of slant stacking is first to do linear
moveout with t' = t - pf, then to sum over the offset. In other words, you can
slant stack in either of two ways: 1) sum along slanted lines in (t,f) space;
or 2) do linear moveout t' =t - pf and then sum over offset at constant t'.
In either case, the entire gather P(f,t) gets converted to a single trace
which is a function of t'. Let us think about what this trace actually is.

We will assume that the sum over observed offsets is an adequate representation
of integration over all offsets. The (slanted) integral over offset will
obviously receive its major contribution from where the path of integration
becomes tangent to the hyperboloidal arrivals. On the other hand, if rays carry
a wavelet with no zero frequency component, and if the arrival time curve crosses
the integration curve at any fixed angle, then the contribution to the integral
vanishes. Put differently, slant stacking is a sort of narrow band filtering

operation which accepts energy at some particular Smell p value and rejects
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FIGURE 5.--A two layer model showing the events (t1,2t1,t2,t2+t1).
Top is a ray trace. On the left is the usual data gather. On the right it is
replotted with linear moveout t' = t - pf. Plots were calculated with
(vl,vz,l/p) in the proportion (1,2,3). Fixing attention on the patches where
data is tangent to lines of slope p, we sek that arrival times are in the
vertical incidence relationships. That is, the reverberation period is fixed,
and it is the same for simple multiples as it is for peglegs. This must be so
because the ray trace at the top of the figure applies precisely to those
patches of the data where dt/dx = p. Furthermore, since 6 = & the times
the times (tl',2tl',t2',t2'+t2') also follow the familiar vertical incidence
pattern.
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FIGURE 6.-~This figure is the same as Figure 5 but more multiple
reflections are shown. This simulates much marine data. By picking the
tops of all events on the right hand frame and then connecting the picks
with dashed lines as in Figure 4, the reader will be able to verify that
sea bottom peglegs have the same interval velocity as the simple bottom
multiples. The interval velocity of the sediment may be measured from the
primaries as in Figure 4. The sediment velocity can also be measured by
connecting the n-th simple multiple with the n-th pegleg multiple.
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energy at other values. In the frequency domain it is closely related to what

is known as pie slice filtering. An interesting characteristic of this "filter"
is that the gain is proportional to the width of the tangency zone. It may be
shown that to a high degree of accuracy this width increases as tllz, which
gives half of the spherical divergence correction. In other words, slant

stacking takes us from two dimensions to one, but a tl/2 remains to correct

field data to two dimensions.

Imagine shooting off all shots at the same time to generate a
downgoing, normal incident, p = 0, plane wave. Such a superposition
could be achieved in a computer with conventional split spread data by
means of slant stacking at p = 0. More general Snell waves could be
synthesized by summation at other p values. (Finite difference
migration techniques could be used to correctly process these waves

where the reflectors are non-flat.)

0f course, we can repeat the slant stacking process for many
separate values of p so that the (f,t) space gets mapped into a (p,t)
space. It turns out that this mapping is invertible. (The inverse mapping
is like the forward mapping followed by frequency domain multiplication by
|w}.) The nice thing about (p,t) space is that the multiple suppression
problem decouples into many separate one-dimensional problems, one for
each p-value. Not only that, but you do not need to know the material
velocity to solve these problems. The one-dimensional inverse problem is
a classic one in geophysics with solutions published by many venerable
geophysicists. Slant stacked field data along with tl/z cylindrical
divergence puts non-zero offset field data into the proper one-dimensional

form.
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