MODELING AND MIGRATION
WITH THE MONOCHROMATIC WAVE EQUATION —-
VARIABLE VELOCITY AND ATTENUATION

Einar Kjartansson

Abstract

A review of the theory for the 45-degree monochromatic wave equation
leads to a simple scheme for migration and diffractions that can readily
handle lateral variations in velocity. Anelasticity can be included without
a change in the finite difference algorithm. Sample Fortran programs are
given for both modeling and migration of zero-offset sections for arbitrary
velocity and Q structures, with synthetic examples. The algorithm has
been adapted for large datasets by taking advantage of the speed of the SEP

array processor.

Introduction

While the theory for the finite difference modeling of waves in the
frequency domain has been developed in detail (Claerbout, 1970, 1976), its
use appears to have been rather limited. As the properties of the earth may
be considered time invariant for the duration of seismic experiments and
linear at seismic amplitudes, no generality is lost by Fourier transforming
over time. There are several advantages in working in the frequency domain.
Each Fourier component of the seismogram may be propagated separately, which
can simplify manipulations of large datasets compared to time-domain methods.
A time shift over a non-integer number of sampling intervals consists in the
frequency domain of a simple multiplication. Perhaps the greatest advantage
of the frequency domain is that all time-derivatives are evaluated exactly by
a simple multiplication. This becomes increasingly important as more:
accurate equations involving higher time-derivatives are used. This also
makes it possible to include the effects of anelasticity, often at little or

no additional cost.



Theory
It is shown by Claerbout (1976, p. 196) that the scalar wave equation
P _+P_ = ip (1)
zz XX 2 "ttt
v
becomes
Q. +Q_+2iTQ + (@ -dq = 0 (2)
YA XX 4
when Q 1is defined by
AUx,z,w) = e B(x,z,0) (3)
P(x,z,0) = J[ P(x,z,t) e vt 4t (4)
m = -2 (5)
v
E = -2 (6)
v

In the derivation of this result, V has been assumed to be independent of
x and 2z, while v may be a function of both x and z. Since we are using
a minus sign in the forward Fourier transform (Bracewell, 1965), the signs in

Equations (5) and (6) are different from those used by Claerbout (1976).

The QZZ term is eliminated if each term in Equation (2) is

differentiated with respect to =z, multiplied by </2ff, and added to the

original equation. The result is

1 1 . 1 2
. = r - +
zﬁszz+zﬁQxxz+Q>°‘+27'qu+zrn‘(m m)Q,
@ -F)Q+ By - o )
m dz

It should be noted that we have not made any approximations yet: Equation (7)

is simply the scalar wave equation in a shifted coordinate frame.



For waves traveling in approximately the same direction as the
coordinate frame is shifted, szz should be small in relation to the

other terms. If it is dropped, the result

7 . - 1 2 2
= —— - +
25Q2+Qxx+2‘mez+2_ﬁ(m m)Qz

@ - 85)q + Q = 0 (8)

I

dm
dz

will be first order in 2z. The dispersion relation is shown in Figure 1.
As shown in Figure 1, the dispersion relation for Equation (8) starts to
deviate significantly from the correct value when ® and m differ by more

than 50 percent.

In many cases this is not a serious limitation. I have used
Equation (8) extensively to model seismic sections, without any difficulties.
If it is assumed that the coefficients in Equation (1) are locally constant,
one may set m=m and then apply a time shift at each depth step. This
assumption that the coefficients are locally constant is commonly made, e.g.

when a wave equation is derived to satisfy a particular dispersion relation.

Thus one can get the wavefield P(z + Az) from P(z) by setting

Q(z) = P(z) %
and solving

-——————-—1: 3

2m(x,z) QXXZ + Qxx + 2 1 m(x,z) Qz = 0 (10)

for Q(z + Az), and then time shifting:

eim(x,z)Az

P(z + Az) Q(z + Az)

Equation (10) is simpler to code than Equation (8) and has a more accurate
dispersion relation, but does not treat the effects of velocity gradients as
accurately as Equation (8). Both equations fit on the finite difference
star described by Claerbout (1976, pp. 184-189) and may be solved using the
Crank-Nicolson scheme. A different perspective on Equation (10) is offered

by Brown (this report, p. 214).



Implementation

The modeling and migration of zero-offset seismic sections is commonly
approximated by the exploding reflector model; that is, waves originate at the
reflectors at t = 0 and propagate toward the surface with one-half the true
velocity of the medium. Thus, when modeling a zero-offset section on the
computer one can start with a blank upgoing wavefield below the lowest reflector
and use Equations (9), (10) and (1l1) to continue the wavefield up toward the
surface. Since a delta function at t = 0 has a Fourier transform that is
simply a constant, independent of frequency, one can then model the exploding
reflectors by adding the reflection coefficient to all of the frequencies at
each z-step. The time section is then obtained by inversely Fourier transform-

ing the results at the surface.

Migration of zero-offset data is simply the inverse of the above. One
starts by Fourier transforming the time section and then continuing each
frequency down, using either a negative v or Az. The value of the wavefield
at t = 0 is then extracted at each depth by summing over the real part of
all the frequencies. An optional step that removes the effect of the wraparound

in the FFT is to subtract the value of the reflector from the wavefield.

Both modeling and migration can be done by taking one frequency at a
time through all the =z-steps, or taking all the frequencies through one
z-step at a time. It is only possible to subtract the reflectors from the
nigrated wavefield, however, when all the frequencies are taken together. 1In
situations where both the reflector and velocity map, and the Fourier transform
of the wavefield, are too large to fit in the main memory of the computer, disk
I0 is minimized by using some combination of the above -- that is, either
taking as many frequencies as will fit into memory through all the z-steps or
keeping as much of the velocity and reflector structure as fits in memory
while taking all the frequencies through that part of the structure. Using
this last arrangement we have been able to take full advantage of the speed
of the SEP array processor (Newkirk and Claerbout, SEP-14, p. 285; Thorson,
this report, p. 275) for migrations of several hundred traces of COCORP data
(see Bloxsom and Ottolini, this report, p. 251). 1In fact, the simplicity of the
data handling of monochromatic equations is so important for the particular
hardware configuration of the SEP computer that the turnarcund for variable

velocity finite difference migrations 1s comparable to that of migrations using



the constant velocity Stolt algorithm (Ottolini, SEP-14, p. 281).

Attenuation

A first-order property of all materials, especially rocks, is the
absorption of elastic energy and the resulting change in the shape of transient
waveforms. Most available data is consistent with the assumption that the
energy is absorbed by a linear process, and that the energy loss per cycle is
independent of frequency. Elsewhere I have shown (Kjartansson, 1978) that
these conditions are satisfied by a model that implies a complex, frequency-

dependent velocity of the form
v = vo(i w) Y (12)
where Yy 1is related to the seismic quality factor Q ‘by

= tan(m ¥) (13)

ol

The possible range for y 1is 0 < y < % and for Q is = >QqQ > 0.

The limiting cases correspond to classical elasticity and Newtonian viscosity.
Since the coefficients in the Crank-Nicolson scheme are complex, even for a
purely elastic model, the only additional computation that results from the
substitution of Equation (12) into either (5) or (6) is in the computation

of the coefficients.

Appendix A is a Fortran listing of an in-core version of a zero-
of fset diffraction program that can handle arbitrary velocity and Q
structures, and Appendix B is a listing of the corresponding migration
program. Except for the input and output routines, these programs should
run on other Fortran systems. Figures 2 through 5 show examples of outputs
produced by these programs as well as the large dataset array processor

versions.

Discussion

Figure 6 shows the impulse response for wave propagation through a
material with a frequency-independent Q, for four different values of Q.

It is routine practice (e.g. Burdick and Helmberger, 1978) in the computation



of synthetic earthquake seismograms to compute a seismogram for a purely elastic
earth model, and to convolve the result with a response function of the kind
shown in Figure 6. This is valid when all the arrivals present in the seismo-
gram have suffered the same amount of attenuation, but is not even approximately
valid for reflection seismograms unless it is assumed that all the attenuation
takes place in the near-surface layers. Since the waveforms, especially at
shorter periods, are often dominated by the attenuation impulse response, it

seems worthwhile to include attenuation in the modeling of seismic sections.

Similarly, removal of the attenuation effects, along with the diffrac-
tions, in the migration of seismic data should help isolate the path independent
source waveform and thus contribute to increasing the resolution of the
results. The removal of attenuation effects is an inherently unstable process,
especially in the presence of noise, so careful filtering of the high
frequencies is required, and the results are likely to be sensitive to the

quality and processing history of the data.

Although an understanding of the seismic attenuation may help us get
sharper pictures of the subsurface, that is not the only reason for trying to
measure and model it. There are both laboratory (Winkler and Nur, 1978)
and theoretical reasons (Kjartansson and Denlinger, 1977; Mavko and Nur,

1978) to believe that there is some unique information about the lithology and
such parameters as the temperature, porosity, porepressure and the amount of
saturation, that can be extracted from a knowledge of the seismic attenuation
parameters, especially when integrated with other geophysical information.
None of the methods that have been discussed in this paper is applicable to the
problem of estimating Q directly from data. A number of methods for
estimation of Q from data have been discussed in the literature, including
spectral ratios as well as time-domain methods advocated by Gladwin and Stacey
(1974) and Kjartansson (1978). The ability to compute accurate synthetic
seismograms for trial models of the Q structure should be valuable in
comparing the various methods for estimating Q and establishing the validity

of the results,
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FIGURE l.--The dispersion relation for Equation (8). Each plot shows

the k /m as a function of k /m. For comparison the semi-circle is also

The accuracy of Equatién (8) is quite acceptable for 0.7m < m < l.5m.
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FIGURE 2.--Modelling and migration using the programs listed in the
appendices. The zero offset section observed at the surface from the reflector
shown in 2d, for the velocity structure shown in 2c, is shown in 2a. Anelas-
ticity with Q = 20 was used. The velocity at a unit frequency is 1 in the
upper layer and 2 below. The result of a migration of the section in 2a is
shown in 2b. Most of the loss in resolution is because anelasticity was
included in the forward calculation, but not in the migration. Parameters used

were as follow: 128 timepoints, 64 traces, 64 depthpoints, At of 0.06, Az of
0.06 and Ax of 0.1.
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APPENDIX A

A source listing of DIFF, a 45~degree
finite difference modelling program

This program with subroutines listed in Appendix C was used to generate the

section shown in Figure 2a.

Finite difference modeling program, that
uses the monochromatic wave equation:

i
-— Q + Q + 2mi @ = (o]
2 m XX1 XX I

Velocity, anelasticity and reflectivity may be
arbitrary functions of x and z.

An improved approximation for the second derivative
is used (variable beta ). see FGDP p. 222.

A zero offset time section is obtained by inversely
Fourier transforming the output of this program.
Dip filtering is included (see FGDP p. 225 )

Einar Kjartansson, September 1978B.

A A AN AN N NN AN AT AN NNAMNA

complex wave(bd, 64), t(64),d(b64), albl),b(&48), e(b4), £(64)
complex aa(é64),bb(64)

complex cvO(é64), cexp,cmplx

complex m,shift,cc3, ccl,rr3,rrl, bab, ra,dipflt

Treal q1(64),vel(bd), ref(b4), gam(b4)

n

Read in parameters and set constants

call rdparm(nom, nx,nz,dom,dx,dz, vis)
rrl = (0.,.5)/dz

vr3 = (0.,2. )*¥dx#dx/dz

dipflt = (0..,1. )#vis

beta = . 14

[al

Clear upgoing wavefield

do 20 iom = 1, nom
do 20 ix = 1,nx
20 wave (ix,iom) = (0.,0. )

n

Take the wavefield up through the structure

do 100 izinv = 1,nz
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40

AN NN

20

n

[a}

70

100

iz = nz — izinv + 1
Get velocity, 1/G and reflectivity

call rdvst(iz,nx,vel):
call rdgst(iz,nx.,ql)
call rdrst{iz, nx, ref)
do 40 ix = 1, nx
gampi = atan(ql(ix))
cvO(ix) = cexp((Q.,~. D)*gampi)/vel(ix)
gam(ix) = gampi/3. 141592654
do 100 iom = 2, nom
om = (iom—1)#dom

Apply time shift and
compute coefficients

do 50 ix = 1,nx
m = —om##(1l —gam(ix))#cvO(ix)

shift = cexp((0., 1. )#m#dz)
tiix) = shift*(wave(ix,iom)+ref(ix))
m=m + dipflt/vellix)

€c3 = vr3#m

ccl = rrl/m + beta#cc3

aalix)= (.5,0.) - ccl

atix) = aa(ix)- (1.,0.)

bb(ix) = ¢ccl + ccl - (1.,0.) - ¢cc3
b(ix) = bb(ix) + (2.,0.)

Absorbing side caondition

bab = m#cmplx(O. ,dx#. 295)

ra = ((1.,0.)+bab) 7 ((1.,0.)=-bab)
b(1) = b(1) + ra#a(l)

bb(1) = bb(1l) + ra#aa(l)

binx) = bi(nx) + ra#al(nx)

bb{(nx) = bb(nx) + ra#aal(nx)

Solve Crank-Nicolson matrix equation

d(1) = bb(1)#t (1) + aa(l)#t(2)
dinx) = bb{nx)#t(nx) + aa(nx)#t(nx-1)
do 70 ix = 2, nx-1
d{ix) = bb(ix)#t(ix) + aa(ix)®*{(t{ix—1)+t(ix+1))
call cvtri(a,b,a.nx,t,d,e, f)
do 100 ix = 1,nx
wave(ix, iom) = t(ix)

Output the result
call wrwave(nx, nom, wave)

stop
end



APPENDIX B

A source listing of DDMIG, a 45-degree
finite difference migration program

This program with subroutines listed in Appendix C was used to migrate the
section shown in Figure 2a, to obtain the result shown in Figure 2b. The
finite difference scheme is stable when there are no lateral variations in
velocity. The only instabilities encountered so far have been for migra-
tions using velocity models with large (50% or more), near vertical dis-

continuities.

Finite difference migration program, that
uses the monochromatic wave equation:

2 m Xxz XX z

Velocity may be an arbitrary function of x and z.
Anelasticity is not included in this program.

An improved approximation for the second derivative

is used (variable beta ), see FGDP p. 222.

The input to this program is the Fourier tranform of a
zero-offset section

Dip filtering is included ( see FGDP p. 225 )

Einar Kjartansson, September 1978.

nAaNNAaNMNANOAON TN AAAAAAAA AR

complex wave(b4,64), t(b4),d(64),a(b4),bi{b64), e(b4), £(b4)
complex aa(b4),.bb(b64d), ref(bs)

complex cexp,cmplx

complex shift,cc3,ccl,rr3,rri, bab,ra,dipflt

real m, vel(b64)

(2}

Read in parameters and set constants

call rdparm(nom,nx,nz,dom,dx,dz, vis)

rrl = (0.,.5)/dz

vr3 = (Q.,2. )#dx#dx/dz

dipflt = (0.,1. )#vis

beta = . 14

c Read the Fourier transform of the surface wavefield.
call rdwave(nx, nom, wave)

C Continue the wavefield down

do 190 i1z = 1,nz

c Get the velocity and clear the reflector sum



16

c The velocity is taken to be negative in migration

call rdvst(iz,nx, vel)
do 40 ix = 1,nx
40 ref(ix) = (0.,0.)
do 100 iom = 2, nom
om = (iom—1)*dom

Apply time shift and
compute coefficients

AN NN

do 50 ix = 1, nx

m = aom/vel(ix)

shift = cexp((0., 1. )#m¥*d2z)

t{(ix) = shift#wave(ix, iom)

m=m+ dipflt/vel(ix)

cc3 = rr3%*m

ccl = rrl/m + beta¥#cc3

aa(ix)= (.9,0.) - ccl

a(ix) = aal(ix)- (1.,0.)

bb(ix) = ¢ccl + ccl - (1.,0.) - ¢cc3
50 b(ix) = bb(ix) + (2.,0.)

n

Absorbing side condition

bab = m¥cmplx (0., dx#. 25)

Ta = ((1.,0.)+bab) /7 ((1..0.)-bab)
b(1) = b(1l) + ra#a(l)

bb(1) = bb(1l) + ra%*aa(l)

b(nx) = bi{nx) + ra*ai(nx)

bb{(nx) = bb(nx) + ra%*aa(nx)

n

Solve Crank-Nicolson matrix equation

d(1) = bb(1)#t(1) + aa(l1)#t(2)
dinx) = bb(nx)#t(nx) + aa(nx)#t(nx-1)
do 70 ix = 2, nx-1
70 d(ix) = bh(ix)#t(ix) + aa(ix)®#{(t(ix-1)+t(ix+1))
call cvtri(a,b,a,nx, t,d, e, )
do 100 ix = 1, nx

C
c Sum to get wavefield at ¢t = 0.
c
ref(ix) = ref{ix) + t(ix)
100 wave(ix, iom) = t{(ix)
do 110 ix = 1, nx

C
c Subtract wavefield at t = 0 to remove wraparound
c

ref(ix) = ref(ix)/nom

do 110 iom = 1, nom
110 wave(ix, iom) = wave(ix,iom) — ref(ix)
150 call wrref(iz,nx,ref)

stop
end
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APPENDIX C

A source listing of the subroutines used with DDIFF
and DDMIG generate the results shown in Figure 2.

In order to run those programs on other computer systems, it should only be

necessary to modify the input and output routines.

subroutine rdparm(nom, nx,nz,dom,dx,dz, vis)

c Suboutine to generate parameters.
nom = b4 :
nx = 64
nz = &4
dt = .06
dom = 2. #3. 141592654/ (nom#dt)
dx = .1
dz = .06
vis = dom
return
end
subrovutine rdvst(iz, nx, vel)
c Subroutine to generate velocity model

Teal vel(nx)
do 10 ix = 1,nx

10 vel(ix) = 1.
do 20 ix = 1,1z
20 vel(ix) = 2.
return
end
subroutine rdqst(iz, nx,ql)
c Subroutine to generate G model

real ql(nx)
do 10 ix = 1, nx

10 qlix) = 1./20.
return
end
subroutine rdrst(iz, nx, ref)
c Subroutine to generate reflector structure.

real ref(nx)

if (iz .ne. 48 ) goto 20
do 10 ix = 1, nx

xx = (nx + 1.)% 5 - ix

10 ref(ix) = exp(—1. #xx¥*xx)
return
20 do 30 ix = 1, nx
30 ref(ix) = 0.
return
end
subroutine rdwave(nx,nom, wave)
c Subroutine to read in the Fourier transformed wavefield

complex wave(64, 64)
integer vopen, uread
logical#1l fn(100)
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10

10

20
30

10

20

call fname(’. frq’: fn)

if = vopen(fn, 0)

do 10 iom = 1, nom

ir = vuread(if, wave(l, iom), 512)

return

end

subrouvtine wrwave(nx, nom, wave)
Subroutine to write on disk the wavefield

complex wave (&4, 80)

integer uwrite, ucreat

logical#1l #n(100)

call fname(’. frq’, fn)

if = ucreat(fn, "0&664)

do 10 iom = 1, nom

ir = vwrite(if, wave(l,iom), 512)

return

end

subroutine wrref(iz,nx, ref)
Subroutine to write reflector structure on disk.

complex ref(nx)

real rref(s64)

logical#*#1l fn(100)

integer ucreat,uwrite

if (iflag .eq. 1) goto 20

iflag = 1

call fname(’. rst’, fn)

if = ucreat(fn, "0644)

do 30 ix = 1, nx

rref(ix) = ref(ix)

nw = uwrite(if, rref, nx#4)
return

end

subroutine cvtri{(a,b,c,n,t,d, e, £)

Solve a tridiagonal matrix equation with
complex and variable coefficients

implicit complex ( a-h,o-1)

dimension t(n),d(n), f(n),;e(n),a(n),bind), c(n)
ni = n-1

e(l) = —-a(1)/b(1)

£(1) = d(1)/b(1)

do 10 i = 2:n1

den = b(i)+c(i)we(i-1)

e(i) = -a(i)/den

£(i) = (d(i) - c(i)*f(i~1))/den

t(n) = (d(n)— c(n)*Ff(n1))/(b(n)+cin)*ei(nl))
do 20 j = 1,ni '

i = n—y

t(i) = e(i) #t(i+l) + £(i)

return

end
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