MODELING DISPERSION AND ATTENUATION

Allan Jacobs

Velocity and attenuation characterize the acoustic properties of a
material. Velocity is the more important of the two in the acoustic
imaging of the earth. Knowledge about attenuation may prove useful in
characterizing traps of natural gas or in deconvolving sections
which involve unusually attenuating and dispersing geology.

Attenuation is characterized by Q_l , the inverse of the quality
factor, which is defined for monochromatic waves as the energy loss
per cycle of sinusoidal deformation divided by maximum stored energy.
In rocks at seismic frequencies Q 1is experimentally found to be inde-

pendent of frequency and amplitude. The last of these implies that any

theory of attenuation in earth materials must be linear to be consistent

with the data.
We require, therefore, a causal theory in which ( is independent

of frequency and in which the wave equation for monochromatic waves is

of the same form as the wave equation without attenuation or dispersion.

b *P,, = /v’ p,, (1

XX

A theory which satisfies these conditions is found in the last
report of the Stanford Rock Physics project. It begins by noting that
since the energy loss per cycle is independent of the period of oscil-

lation, it is reasonable to try a creep function of the form

$(t) = at® 2)
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The creep function is the strain response to a unit step function stress.

Since the stress-strain relationship is linear, we can write that

T(w) = M(w) E(w)
E(w) = S(w) Z(w)
M(w) = 1/S(w)

where I(w), E(w), S(w) and M(w) are the Fourier transforms of the stress,

strain, compliance, and modulus of the acoustic medium. It follows that

E(w) = iw S(w) (1/(iw)) I(w)

so by the derivative theorem of the frequency domain . Therefore

iwS(w) 1is the Fourier transform of the creep function, and that s(t)
is the time derivative of the creep function ¢(t) . A creep function
similar to that hypothesized is used.

¢(t) = H(t)tz"/r (1 + 2v)K

which has time derivative

s(t) = () 2¢2 0 1+ 29k (3)

This relation has a Fourier transform

S(w) = (iw) 2/

so that

M(w) = K(iw)?2Y (4)

Equation (4) can be inverse Fourier transformed to give the time domain

modulus of the material

m(t) = H(t) K £ 2YT (1 - 2v) (5)
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This is a causal, real function as desired.

We can rewrite (4) as

M(w) = K lez exp (imv) sgn(w) (6)

which implies that the phase difference between stress and strain, IGI

is wv . If more than one frequency is present we can define
1/Q = tan (9
so
Q_l = tan MV , (7

We rewrite (7) as

v = (1/Q) tan T(1/Q) T (1/Q) . (8)

If we assume that we have a wave equation with phase velocity given

by

cw) = [mw)/p]t?

then its sinusoidal solutions are given by

U = Re exp [i(wt-k(w)z)] = Re exp [i(wt-wt(w)_lz)]
U = Re exp (-az) exp [iw(t-z/c(w))]

where ¢ 1is the phase velocity and o dis the attenuation. It follows

that

-a = i2w Im { [p/M(w) ]1/2 1
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which, using equation ( 6), gives

1/2

a = |w|l_vsin (mv/2) (p/K) sgn(w) (10)

Similarly, the phase velocity satisfies the relation

1/2

1/ 1/2

Re [M(w)/p12 = (x/0)? Re [(iw)2V]

[¢]
I

1/2

(K/p) Re [ |w|2v exp (imwv) ]l/2

1/2

ft

(K/p) |w|v cos (mv/2) (1)

We can combine (10) and (11) to get

c=c lu]”
)
= |w|l—v c  tan (mv/2) sgn(w)
c, = (R/p) cos (wv/2) , (12)

Now that we have oa(w) and c(w) we may want to migrate with them
included in the wave equation. With finite differences, we can migrate
each frequency component separately and sum the results.

We start with the 15 wave equation for upcoming waves

p,.. + (2/V)pZt = 0 (13)

XX
and express p(x,z=0,t) = Q(x,z=0, ) exp (iwt)
so that

b (Qxx + 2iw/v) Qz) exp (dwt) =0



If it is safe to assume nearly vertical propagation we can substitute
wt by (wz/v) and then discretize. Letting k denote the x index

and j denote the =z index, we set

™

j+1 j41 g4
%

[ = + (-2+ia)q '~ + 1 exp (iwz/v)

] . J J
where
a = (4iwbdz) /[ (vAxAX) .

If attenuation is to be included the exp (iwz/v) in the above
equation needs to be replaced by exp [iwz/v + a(w)z] . 1In practice
this makes the algorithm unstable so an exponential gain has to be
applied in the course of migration. The replacement is then with
exp (iwz/v + az - gz) , where g is a suitably chosen constant or
function of =z .

The algorithm proceeds by first transposing the unmigrated time
section and then taking the Fourier transform of all of the traces.
The traces are then time reversed in the frequency domain by taking
advantage of the symmetry properties of the Fourier transform. This

matrix is then transposed back and the various x strips of different

frequency value are then read off and migrated downwards one at a time.

These submigrations can be summed and the complex sum inverse Fourier
transformed to give a migrated section. Q in this algorithm can be
taken as a function of x and =z

It is also possible to model constant Q sediment using the FK
scheme. The derivation of the algorithm proceeds as usual except the
projection operator is taken to be exp (ikzz + az) instead of
exp (ikzz) . We apply this operator to the Fourier transform over

x and t of the surface data and get

179

p(x,t,z) =’£{P(k,w,z=0) exp(ikzz+uz—iwt+ikx) dw dk (14)
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We seek p(x,t=0,z) and therefore need to change variables of inte~

gration from w to kz . This is done using the dispersion relation

ki = 2 @=V) vaz - k2, (15)

This can be rearranged to give

1/2(1-v)
= vé/(l‘“) x> + k) (16)

and can be differentiated to yield

dw = vé/(l'v) (ki + %y (D2 g -t dk_ (17
Substituting (15) into the expression for o yields
o= 2+ kHY? tan(mvr2) (18)

Between (16), (17), (18), and setting t=0 to get the migrated

section, we can get an w-independent integrand. If we approximate
exp (az) =1 + az

then the integral (14) becomes for t=0

p(x,t=0,z) ={g&dkz dk P(kz,k,z=0) exp (ikza + ikx)

1+ (ki + k2)l/2 tan (mv/2)] vé/(l_v) (ki + kz) (19)

where we have used

1/(1-v) ,. 2 2y1/2(1=v) _

P(kz,k,z=0) = P(kz,w=v0 (kz + k) o) .



