45-DEGREE WAVE EQUATION MIGRATION

Allan Jacobs

The 45-degree equation is normally employed in an implicit scheme
which has not been published in a SEP report before. A review of the
theoretical background, stability properties, dispersion relatiomns,
inaccuracies, and programming quirks of the method is in orxder. After

these topics are explored, a sample program will be appended.

l. Theory and Numerical Implementation

The derivation of the 45-degree approximation starts with the wave

equation.

1
Pyx t P, = V2 Ptt

A coordinate transformation is applied, introducing retarded time coor-

dinates for upcoming waves.

X =X
t' = t+z/v

0]
z' = z

p'(x',t",z') = p(x,t,z)

Using the chain rule, we get the wave equation in the new coordinate

system. Dropping primes, this is

+ @IV Ip,, ¥ VS0 - v CIp,, = 0

Pyx TP 0 tt

XX zz
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If we assume a homogeneous earth and a proper pick for Vs this becomes

= l
Py +p,, ¥ (2/v)ptz 0 (L

0f these terms, P, is the smallest. We drop it temporarily to get

Poy (2/V)ptZ =0

and differentiate by z

pZZt - —(V/Z)pXXZ (2)

Next we differentiate equation (1) by t giving

p +p,,.t (2/v)p, =0 (3)

xxt z7
and substitute (2) into (3)

P - (V/Z)pXXZ + (2/v)pttz =0

XXt

which we recast in the form

(v/2)p,, - (/P + D, =0 )

Equation (4) is relation which we will discretize and implement on
the computer. In the process, a computation star with three time levels
and two z-levels will be constructed. We first define a set of variables

and indices

z. = jAz
i J
tk = kAt

vAtAz
a=—>5

8 (Ax)

2

b vAt (5)

4hx
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Next we let T denote a tridiagonal matrix with 5 (-1,2,-1) along

(8%)
its diagonal. This matrix is approximately equivalent of the negative of

. . , k
the second derivative over x . Finally, we let pj denote a vector

defined along the x-axis at z-level j and t-level k.

Equation (4) now takes the form

- k+1, _k+1 _k-~1 k 1 k+l _k+1 k, k-1 _k-1
0 aT (P, j+1 P Pj+l P )+ bT(P 1 PJ +2 + 2P +P, 41 Pj )

+ (LK +Pk 1 §+l+29§ ? -t

3417 541 ) (6)

which we diagram. Let y=1/6 improving the approximation to axx

-11 1 111 -1 1 1 ]-1
2 1-2 |+ aT 0 0 |+ bT -2 2 | + T -2 2 =0
-1 1 -1 -1 -1 1 1 §-1
2. Stability

A rather tedious proof will now establish that (6) is unconditionally

stable. We rewrite (6) as

[I+aT+bT]Pk Lt [2m426T1PK 4 [ToaTepT]PETL
j+1 i+l
= [I—:=1T+bT]Plj"1 + [—21-2bT]P§ + [I+aT+bT]P1j<+l (7)

S0 as to separate the j+l z-level from the j z-level. Using the
notation in Clarebout's book FGDP we denote the delay operator by 2
and take the Z transform over the time index k . At this time, we
also replace I by 1 and the matrix T by a scalar T , as described in
FGDP. This is permissible because the eigenvalues of the matrix T

are real numbers lying between 0 and 4. The Z-transform is

[(1+aT+bT) 2% + (-242bT)Z + (1-aT+bT) 1Q, , (2)

= [(1-aT+bT)Z% + (-242bT)Z + (L+aT+bT) 10, (2)
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The input is (Z) for upcoming waves so we write the transfer

U
function as

(1+aT+bT)z2 + (-242bT)Z + (1-aT+bT)
(14aT+bT) + (-2+2bT)Z + (l—aT+bT)22

H(Z) = (8)

Equation (8) corresponds to an all-pass filter so the z-dependence
of the migration process is stable. Time recurrence stability will be
investigated by an analysis of the roots of the denominator of (B).

The roots occur when
(1-aT+bT)Z% + (-242bT)Z + (1+aT+bT) = 0

now we introduce new variables A=aT , B=bT . The poles of the transfer

function are now found to lie in the complex Z-plane at

T et e A et s e

1B+ |{-148 \? _ 1+a+B ~ 9
1-A+B 1-A+B 1-A+B

From (9), the condition that the roots be real is that
2
B £ (1/4)A (10)

A, Case of real roots, both > 1.

This happens when (10) is satisfied and when the smaller of the
two roots is greater than unity. This last occurs when
1-

B
1-A+B 1-A+B T 1-A+B

which we rearrange to give

e e A S i e

' 2
1-B 1+A+B . A-2B
&

1-A+B T 1-A+B ™ 1-A+B

(11)
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In order for this to happen, the right hand side of (11) must be positive.

In other words, (AD>2B and B-A>-1) or (A<2B and B-A<«-1). 1In
addition to one of these, the inequality (11) must also hold. Since both
sides are positive we are justified in squaring both sides and do enough
algebra to find that it is necessary that B-A’> -1. Thus the condition for
real roots, both greater than 1 is that (10) hold, and that

A>»2B and B-Ay-1 (12)
B. Case of real roots, both <-1.

This happens when (10) is satisfied and when the larger of the two

roots is less than -1.

-8, \(1-8_\* _ 1mum N
1-A+B 1-A+B 1-A+B ™

which we rearrange to give

2
1-B 14+A+B - A-2
<1—A+B) " Ia+B S IoATB (13)

For (13) to hold, its right hand side must be positive, giving the
conditions (A>2 and B-A>-1) or (A< 2 and B-A<-1). Given this, we

can square both sides of (13) and get B-A>-1 after some algebra. Thus
the condition for real roots, both less than -1, is that (10) hold and
that

Av2 and B-A>-1 (14)

C. Case of real roots, one>1 and the other < -1.

This is the hardest case. We start with the inequalities

2
1-B 1-B 1+A+B
1-A+B T (1—A+B> - Toass 2L (15)
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i ; S
1-B 1-B 1+A+B
1-ATB - J(l—A+B> " I-ars <71 (16)
We take up inequality (15) first, writing it as
' 2
J[1-B _ 1+A+B  2B-A 17)
1-A+B 1-A+B 1-A+B

Inequality (17) is automatically true if its right hand side is negative;
if (A>2B and B-A>-1) or (A< 2B and B-A<-1).

Otherwise, we need to square both sides and simplify. The condition
we then obtain is that (A<2B and B-A>-1) or (A»2B and B-A<-1) to
guarantee that the right hand side is positive and that B-A<-1, so the
overall condition for this special case is that (A>2B and B-A «-1).

Inequality (17) and therefore inequality (15) holds when

(A>2B and B-A>-1) or (A<2B and B-A.<-1) or

(A>2B and B-A<-1) (18)

Inequality (16) also has to be satisfied so we rewrite it as

(1= \?  1#a+B _ 2-a (19)
1-A+B 1-A+B 7 1-A+B

This inequality is automatically true when its right hand side is negative,

when (A>2 and B-A»-~1) or (A<2 and B-A<-1). Otherwise we have to
again square both sides of an inequality, this time inequality (19), and
simplify. This process leads to the inequalities (A'»2 and B-A<-1).

Therefore, inequality (19), and therefore (16), is true when

(A>2 and B-A>-1) or (A< 2 and B-A<-1) or

(A>2 and B-A«-1) (20)
Both (15) and (16) are true when both (18) and (20) are simultaneously

true. Thus the condition for real roots, one greater than unity and the

other less than -1, is that (10) be satisfied, and that

(A<<2B and B~A<-1) or (A>2B and B-A<-1) (21)
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D. Case of complex roots.
If the roots of (9) are complex then they must occur as a complex
conjugate pair. The squared modulus of each of these roots is equal to

the product of one with the other. We rewrite (9) as

;= 1B +3 |1+A+B _[1-B 2
1-A+B 1-A+B | 1-A+B

The modulus squared is

l2)* - T

which is always greater than 1.

Finally, we note that the condition for complex roots is that
2
B>(1/4)A" .

E. Wrapup

The above proof has succeeded in partitioning the A-B plane into
disjoint regions which completely cover that plane's first quadrant.
Since A=alT>0 and B=bT>0, this turns out to be the only part of the
plane of interest. Since the cover is complete, the poles of the
transfer function (8) must all lie outside of the unit circle.

The partition is sketched in Figure 1.

~—- A <2B and B-A > -1

A <2B and B-A <-1

Imaginary
Roots

A > 2B and B-A <-1

>

*A > 2B and B-A > -1

Figure 1
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3. Frequency Dispersion

Many of the properties and problems associated with the use of the
45 degree equation can be conveniently studied in the Fourier transform
domain. The best approximations are those which fit the dispersion
relation of the exact wave equation as closely as possible over the
widest possible domain. Errors associated with mismatching of the
dispersion circle of the exact wave equation due to undersampling of the
data and approximations to the derivatives in the wave equation are
lumped under the term frequency dispersion.

We start with the 45 degree equation and derive a dispersion relation
in the retarded time frame. The Fourier transform of the 45 degree equation

is given by

0 (22)

where k 1is the transform variable associated with x , suffix deleted.

We let

K = kv/w
KZ = kzv/w

so that (1) can be rewritten as

2
K - _0.5K (23)

Z1.0.25 K

The dispersion relation for the exact wave equation is, by similar

means, found to be

k2 + ki = (w/v)2

or

KZ = -(1-K") (24)
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which in retarded time coordinates becomes

9 1/2
KZ =1- (1-K") (25)

In practice, we have to sample the data in s and t , and are
forced to use approximations to the partial derivatives in the wave

equation. The approximation used in this paper is

1

2
I S A e
XX

XX

where axx is the discrete second difference operator on the x-axis
(1,-2,1), and Yy 1is a constant of magnitude 1/6 or 1/7. The Fourier

transform of this can be found by using a formula from FGDP

_ . 2 kiAx
F.T. (dxx) = -4 sin -

so that
K2 = - F.T .(§ ) = —% sin? (kAx/2)
XX 2
(Ax)

I+4y sinz(kAx/Z)

where k and K are approximations to k and K , respectively.

Letting

and noting that

kAx _ vk wAx _ vkm

2 ) 2v T 2w = Km
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we set

~2 -2 sin2 Km

1+4y sin2 Km (26)

We insert this last relation into (22) and (25) wherever K appears.

The results are approximations to the 45 degree equation and the exact wave
equation, respectively, that take into account the effects of discrete
sampling of the data.

This gives us three dispersion relations of practical value: those

belonging to the exact wave equation, the sampled wave equation, and the

sampled 45 degree equation.

2 1/2

KZ =1 -~ (1-K")
1/2

-2 sin2 Km

KZ =1-]1l-m D) (27)
1+4y sin”™ Km

-2 . 2

Kz _ 0.5m sin” Km

l+(4y—0.25m_2) sin2 Km

In (K,KZ) space, or dip-space, the sampled equations are periodic
with period mr . As the sampling density along x decreases the
approximation given by the sampled 45 degree equation to the dispersion
relation of the exact wave equation deteriorates. In general the disper-
sion curve for the 45 degree equation lies outside the wave equation circle,
the fit to that curve worsening as vkx/w increases. Near the points
corresponding to dips of 90 degrees there may be aliasing as well,
especially as m begins to exceed 7 in magnitude.

The effect of frequency dispersion is to incorrectly migrate dipping
beds. The timing error associated with the use of the 45 degree equation

for a eflecting bed with dip 6 is given by

Begy = (2/0) (k,=k,) = (2/9) (K-K) (28)
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A table of timing errors versus dip angles for three values of the

parameter m follows.

Atdip v/2 vs. Dip in Degrees

m = 0.5 m= 1,0 m= 2.0
0 0.0000 0 0.0000 0 0.0000
10 0.0000 10 0.0003 10 0.0015
20 -0.0006 20 0.0045 20 0.0190
30 -0.0031 30 0.0208 30 0.0695
40 -0.0095 40 0.0577 40 0.1575
50 -0.0226 50 0.1214 50 0.2808
60 ~0.0455 60 0.2143 60 0.4355
70 -0.0810 70 0.3352 70 0.6166
80 -0.1320 80 0.4810 80 0.8127
90 -0.2000 90 0.6471 90 1.0000

If the 45 degree equation is used to make a depth section and proper
location of events with dips with high angles is desired, it is evident

that a high sampling density along the surface of the earth is necessary.
4. Anisotropy Dispersion

Anisotropy dispersion is the effect of group velocity errors in
wave equation approximations. If we start with the wavefront from a
point scatterer and attempt to collapse that wavefront to a point
using some migration scheme, it follows that the failure to get a
complete collapse is properly studied by looking at anisotropy dispersion.
In order to set the group velocity as a function of K it is
convenient to define intermediate variables Sy and Sw , defined by

taking derivatives using the appropriate dispersion relation in an

unshifted time frame.

s, = s = — (29)
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For the exact wave equation s

1/2
I T s -
S T Tk KD =
which simplifies to
9 -1/2
S, = K(1-K")

k

(1-k%)

<le

Correspondingly, S, is given by

1/2
- _ 12 W
S T T v (1-K) v
1/2
s =-x @1k -1L
W v v
-1/2
__1 2
Sw = -3 (1-K™)

For the sampled wave equation, we start with the dispersion relation

-2 sin2 Km

(1-k%)

K% (1-k%)

K =-f 1-m
Z

1+4y sin2

Km

1/2

is given by

-1/2
K

€l

-1/2

K (vk/wz)

-1/2

is found to be

1+4y sin2 Km

vm sin2 Km

and take derivatives. The wvariable Sy
: -1/2
s =L l_m-Z sin_ Km m—2 3
k v 144y sin2 Km ok
-1/2
m_zw -2 sin2 Km
Sk 2v I-m 2 w
1+4y sin” Km
1 - sin® km \1/2 sin’

]
It
|

—
!

=]

1+4y sin2 Km

(1+4y sin2 Km)2

(1+4y sin® Km)>2

(30)

(31)
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w
9 -1/2
s, = ;‘Kz B %;_ l—m_z sin gm m—2 sin (%Km) , Km-l
v 1+4y sin” Km (1+4y sin” Km) w
-1/2
. 2
W -2 sin” Km
SO.) = - 7 (l—m 2 ) -
v 1+4y sin™ Km
) 2 N2
% K (l—m_ Sin 12<m (1+by sin2 Km)_2
1+4y sin™ Km

Finally, for the sampled 45 degree equation, s is found by con-

k
sidering the dispersion relation for the 45 degree equation in an unretarded

time frame.

_ 14+(4y-0.75 m_z) sin2 (Km)
1+(4y-0.25 m‘z) sin’ Km

The derivative sk is

(4y - 0.75m‘2) sin 2Km

1
s, = - =
k L et (4y - O.25m—2) sin2 Km

1 1+ (4y - 0.75 '2) sin? Km -2

+ = Y : m_2 (4y - 0.25m 7) sin 2Km
T (1 + 4y - 0.25m %) sin” Km
_ 1 sin 2Km

°k T 2m (33

[1 4+ (4y - 0.25m" %) sin® Km]2
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and the w derivative Sw is found to be

1 1 sin 2 Km m
S - T v % " 2 R I
® [1+(4y-0.25 m “) sin” Km]
-2 . 2 .
1 1+(4y-0.75m ") sin” Km K sin (2Km)
s = - = - (34)
w v 2 2

1+(4y-0.25 m %) sin® Km 2V [14(4y=0.25 m 2) sin® Km]

Wavefronts, to reiterate, move with a velocity given by the group
velocity of the medium (or computational grid) in which they propagate.

This velocity ratio of S, to s In general group velocity is a

k
function of position and direction of propagation. It turns out that the

anistropy of group velocity associated with the 45 degree approximation is
important to an understanding of the errors associated with the use of the
45 degree equation.

The equation for the wavefront from a point scatterer is given by

(x,t) = vt (sk ’—Sw) (35)

From this relation it is possible to construct a travel time curve for
the wavefront in (x,t) space due to a point scatterer. It is also
possible to construct the wavefront in (x,z) space which is the
response of the 45 degree equation to an impulsive point input. The
theoretical curves generated agree well with the output from this program--
examples of both curves are provided.

The wavefront curves show that the 45 degree equation allows the
propagation of anamolous waves with K magnitudes greater than 1.
The spurious amplitudes are seen to lie above the impulsive source in
the example provided and form a characteristic heart shape on the plot.
These waves can be attenuated through the use of dip-filtering and
numerical viscosity.

As in the case of the phase velocity a table errors can be formed.

This time the position and timing errors are given by

9 0 ~
A = - — -
(Ax,8t) z ( 9k 3;)(?2 k;)
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5. Implementation

This section will try to explain how the implementation of the
45 degree equation appended operates. Some of the subroutines and
systems calls used are peculiar to the computer used at the SEP so
an effort will be made to explain them so as to minimize the confu-
sion. Besides these asides, the section will attempt to follow
thorugh a single cycle of execution and only touch upon initiali-
zation steps.

Before proceeding further it will prove expedient to discuss the
variables and names used in the algorithm. The most important variables
are upll, upl2, upl3, up2l, up22, and up23. These are vectors lying
along the x-axis and are the wave variables. Their indices refer to
their location in the computational grid. 1In the time-reversed frame
in which it is easiest to migrate for machine-~dependent reasons, the

45 degree equation can be written as

2 2 2 2 2 2
-p P —P -pP -p e 02 —02
20| -2p| +aT 0 0 +bT -2p 20 +yT -2p | 2p =0
-1 1 1 1 -1 1 1 -1

Indexed positions on the
- - 11 {21
computational grid.
12 {22
13 123

where both sides operate on the wave variable. The upper left hand
corner of each grid then operates on the vector upll, the middle left
part of each grid on the vector upl2, the lower left hand corners on

upl3, the upper right hand corner of each grid on up2l, and so on.
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In each slot of the computational star are located a number of

variables. These are defined as follows:

a = the '15 degree' constant

b = the '45 degree' constant

rho numerical viscosity set equal to 0.99

gamma improves approximation to axx; set equal to 1/6

T operationally the negative of the second difference operator

on the x-axis

Most of the computation involving these variables is done in the sub-
routine called 'dset', named that because its output is a vector 'dtri'
defined along the x~axis and equivalent to the 'd' which is fed into
subrountine tri in FGDP and in this algorithm. The other place in which
this kind of number crunching occurs is in the subroutine triset, which
calculates the coefficients stri, btri, and ctri to be fed into subroutine
tri.

Now for the aside into input-output on the SEP computer. All of
the I/0 in this program is done through the subroutines called 'uread',
'uwrite', and 'endpt'. These generally take a variable called 'index'
which is the size of the vector to be read into storage in bytes, as well
as a parameter 'ifld' which is a file descriptor which functions as an
address for the location of the first element of the file to which it is
assigned. The routine 'endpt' is a subroutine which moves the pointer to
the beginning (or in the case of a diffraction program to the end) of
the file named by the file descriptor referred it. In most cases, a local
variant of 'uread', 'uwrite', and 'endpt' can easily be substituted. A
potential source of difficulty and misunderstanding occurs just above the
line marked 20. 1In these lines the file descriptors are interchanged.
This means that what was once the input file is now the output file and
vice versa. The algorithm proceeds then, by migrating one z-step on file
1 and overwriting the results on file 2. At the next z-step, file 2 is
used as input and the output is written on file 1, and so on. This pro-
cedure allows a sequential access of files with something close to a
minimum of storage (the calculation can also be done in place but that

will not be presented here because the procedure is both difficult and

slow).
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We are now ready for a cycle through a single z-step.

The first step takes place where 'do 20 jz=1,nz-1' appears. The
index jz , as the name implies is the 2z coordinate of the wavefield.
It, along with the index kt , also indicates the location of the lower
left hand corner of the computational star of 'upll', 'upl2', ... described

above in a grid in (x,-t') space.

z = O - z
_t'
11 |21
\ 12 122
13 {23
¥
t'=0

After entering the do loop 'endpt' is called to set pointers to the
beginning of both the output files. The algorithm then proceeds,
in an inner loop, to comb downward (since this is along the reversed
time axis, the combing proceeds from positive to zero values of
(t=t'-z/v) with the computational star. It first reads a vector of
values from the x~axis into upl3 (lying at the lower left hand corner
of the star) and feeds all the 'up' variables into the routine
'dset', except for 'up23' which is unknown.

The output from 'dset' is 'dtri', which is input along with a number
of coefficients into routine 'tri'. 'Tri' solves the usual tridiagonal

system of equations defined along the x-axis and involving the operator



166

T. Most of the x-derivatives involving T are calculated in 'dset'.
In any case, the output is 'up23', which is written into the current
output file.
If we are not at a point for which "t <0, then we proceed to shift
the values held in the grid of 'up' variables upwards in that grid.
The values associated with upl3 are reassigned to upl2, those in upl2
are placed in upll, and so on. This operation, done in the subroutine
'ushift', is equivalent to moving the computational star down in (z,-t')
space as diagrammed above. At this point up 13 and up 23 have incorrect
values - a situation remedied in the next iteration of the inner do loop.
The only major points remaining for discussion are stopping con-
ditions for the do loops and the location of the final migrated depth
section. Since we are migrating zero offset sections at this point,
the explosive reflector model holds. In this case, provided we have
migrated with half the media velocity, the geophones will be at the

reflectors at time t=0 . Our initial time transformation was

t=1t' - z/v

so we subtrace delz/vel for every z-step undertaken by the outer do
loop and subtract delt for every t-step taken in the inner do loop.
The time at the beginning of the iteration over the time index is
clocked with the variable called 'time' and the time within the inner
iteration is clocked with 'tstop'. When 'tstop' is found to be less
than zero the inner do loop is exited and another step in 2z is taken.
If it is found that 'time' is less than zero, it is decided that there
remain neither z-steps nor t-steps to be taken and both program cycles
are exited. The final data lies along a diagonal in (-t',z) space
and is easily seen to be located in the last file to be written on.
One last detail is that though diffraction proceeds similarly
it was found to be necessary to initiate each comb of the inner do
loop differently. The quality of the final diffraction was signifi-
cantly improved if this initial step in t' was done not with the
six-point operator but with a corresponding four-point operator

given by the 15 degree wave equation.



Diffraction from a point scatterer

v =1
At 1
Az = 2
Ax = 2

p = 0.97
Yy = 6.00
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Result of migration starting with an impulse

>
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p = 0.
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upmig4S. £

This program implements the 45 degree wave equation. It
operates on two files, ‘/scr/bert/migfile’ and ‘/scr/bert/
migrated’. Initially these files are time reversed and
unmigrated sections, with data arranged in strips of «x.
The output must be time reversed to get the final,migrated
section.

Variables in order of occurence

upll wave variable lying in the upper left hand
corner of the 6-point computational grid
that combs along the time axis. The ‘up’
variables are vectors defined along x—axis.

upl2 wave variables in the middle left

upll3 wave variables in the lower left corner of

the grid into which is read, at each t—step,
a value from the current input file

up2l wave variable in the upper right corner
up22 wave variable in the middle right
up23 wave variable in the lower right. Tri cal-

ctulates its value in the course of a t-step.
The new value is then stored in the current
output file.

dtri ‘d’ vector defined along the x—-axis and an
input to ‘tri’ as described in FGDP

etri another input to ‘tri”

ftri another input to ‘tri’

nx number of traces

nt number of time points

ifilds the address of one of the files operated on.
The address is called a file descriptor.

ifiel address of the other file operated on

ifirst the initial value of ifilds

Tho numerical viscosity constant set just smaller
than one — corrects for a DC pole

gamma improves the approximation to the second
derivative with respect to x

ammag the reciprocal of gamma

delt sample time interval

delz desired z—step interval

delx geophone spacing

a 15—-degree variable
a = (vel#delt#delz)/(B. #delx#delx)

b 45~degree variable
b = ((vel#delt)/ (4 ndelx))#sd

vel transformation velocity

time unretarded time coordinate at the start of
each z-step

tstop unretarded time coordinate at each t-—-step

ilast address of the last file written on

Subroutines in order of occurence
files: opens the files; arguments are the file
addresses
getvar: gets migration parameters from the ter-
minal and calcvlates ‘a’, ‘b’, and ‘gamma’
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nnNnMnN

[ T T e B |

begin: does some more initializations

MzZero: zeroes the 6—point star of wave variables

endpt: moves pointer to the beginning fo file
addressed by its arguments

uread: reads the wave amplitude from the last
z—step into the ‘upl3d’ location in the
6-point computational grid

dset: prepares the vector called ‘d’ in FGDP
to be fed into the subroutine ‘tri”

triset: calculates the other inputs to ‘tri’

tri: solves a tridiagonal system of linear equa-
tions for the wave field at the next
t~step

vwrite: writes the newly obtained wave amplitude
into the next location in the current
output file

ushift: effectively moves the computation star
along the t-axis in (z,%t) space

finish: closes the files and indicates which file
was last written on and should be plotted

declarations and initializations

dimension upl1(80},upl12(80),upl3(8BO)
dimension up21(80), up22(80), up23(80)
dimension dtri(80),etri(B0), £tri(80)

data nx/80/,nt/100/

call files(ifilds, ifiel, ifirst)

call getvar(rho, gamma, delt,delz,delx,a,b,vel)
call begin(nt.nz,nx, index, delt, time)

outer do—-loop over the z—index

do 20 jz=1,nz-1

call mzero(nx,upll,upl2, up21,up22)
call endpt(ifilds.O)

call endpt(ifiel, O0)
time=time-delz/vel

program is done when there are no points for which £ > 0O

if{time. 1e.0.) go to 21
tstop=time

inner do—-loop over the t—index

do 10 kt=1,nt-1

call vuread{(nx,upld, index, ifilds)

tall dseti{nx,upll,upl12,upi13,up21.,up22,a;b,dtri, rho, gamma)
call triset(atri.btri,ctri,a, b, gamma, rho)

call tridatri,btri,ctri,nx,up23,dtri,etri, ftri)

call vwrite(nx,up23, index, ifiel)
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stop moving along t: and z—step instead when t <€ O

if((tstop—delt). 1t.0.) go to 11

ilast=ifiel

call ushift(nx,upll, upl2,upl13,up21, up22, up23)
tstop=tstop—delt

continue

continue

interchange the file descriptors making the current input
the output file for the next z-step, and vice versa

itemp=ifilds

ifilds=ifiel

ifiel=itemp

continue

continue

call finish(ifilds, ifiel,ifirst, ilast)

stop

end

subroutine getvar(rho, gamma, delt,delz,delx,a, b, vel)
call setfil(43, ‘paramd4s5’, 512)
read(43)vel, delt, delz,delx. rho, ammag
write(b,46)vel, delt, delz

write(6,47)delx, rho, ammag

format(1ix, ‘vel 7, #6.3,' delt 7', +6.3, ' delz ‘', 6. 3)
format(ix, ‘delx ’, £#6.3, vho ', #6.3,' ammag ', £6.3)
gamma=1. /ammag

a=(vel#deltitdelz)/ (8. #delxsdelx)
b=(({vel#delt)/ (4, #delx))#s2

write(é,48a.h

format(ix, ’a ‘, £6.3:3x: " b ', £6. 3)

return

end

subroutine uread{(nx.,v, index, ifld)

dimension v(nx)

nread=iread(ifld, v. index)

return

end

subroutine vwrite(nx, v, index, ifld)

dimension vi{nx)

nwrite=iwrite(ifld, v, index)

return

end

subroutine endpt(ifld, ptrnm)
nseek=iseek{ifld, O, ptrnm)

return

end

subroutine dset(nx,upll, upl2, upi3,up21,up22,a,b,dtri,
Tho, gamma)

dimension uplli(nx),upl2(nx), upi3(nx),up21i(nx), up22(nx)
dimension dtri(nx)

nxl=nx-—-i

do 10 ix=2,nxl

co=—rho#rho
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dtri{ix)=co®upli(ix)
deriv=—upll(ix—-1)+2. #yupli(ix)—uplli(ix+1)
co=rho#rho¥(-a~b+gamma)
dérif(ix)=dtri(ix)+cowderiv
co=2. #Ttho
dtri(ix)=dtri{ix)+cos#upl3{ix)
deriv=-upl2{ix-1)+2. #upl2(ix)—upl2{(ix+1)
co=—2. #rho#(b+gamma)
dtri(ix)=dtri{ix)+cokderiv
co=—1.
dtri(ix)=dtri(ix)+co*upl3(ix)
deriv=—upl3(ix—1)+2. #upl3(ix)—upl3{ix+1)
co=a-b+gamma
dtri{ix)=dtrilix)+cosderiv
co=rhod#rho
dErilix)=dtritix)+co#up2i(ix)
deriv=—up21{ix—1)+2. #up21(ix)~up2i(ix+1)
co=rho#rho¥#(-a+b—~gamma)
dtri(ix)=dtri(ix)+cosderiv
co=-2. ¥rho
dtri(ix)=dtridix)+co#up22(ix)
deriv=-—up22(ix—1)+2. #up22(ix)-up22(ix+1)
co=2. ¥rho#{(b+gamma)

10 dtrilix)=dtri(ix)+co#deriv
return
end
subroutine mzervo(nx,upll,upl2, up2i,up22)
dimension uplid(nx),upl2(nx), up21inx), up22(nx)
do 10 i=1,nx
upll1(i)=0.
upl2(i)=0.
up21(i)=0.

10 up22(i)=0.
return
end
subroutine triset(atri,btri,ctri,a, b, gamma,rho)
atri=a+b-gamma
btri=-1. -2 ®¥atri
ctri=atri
return
end
subrouvtine tri(atri,btri,ctri,nx, ttri,dtri, etri, ftri)
dimension ttri(nx),dtri(nx),etri(nx), £trif{nx)
nxi=nx—1
etri(l)=1.
ftri(1)=0,
do 10 i=2,nx1
den=btrit+ctrivetri(i-i)
etri{i)=—atri/den

10 ftri(id=(dtri(id—chriwftri(i~1))/den
tErit(nx)=ftriftnxl1)/(1. O—-etri(nxl1))
do 20 j=1,nx1
i=nx—}

20 ttridi)=etri(id#ttri(i+i)+PEri(i)
Teturn
end
subroutine ushiftinx,upll, upl2,upl13, up21, up22, up23)
dimension upll(nx), upl2(nx), upl3{nx)
dimension up21(nx), up22{(nx), up23{nx)
do 10 i=1,nx
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upli(id)=upl2d(i)

upl2(il)=upl13(i)

vp2l(i)=up22(i)

up22(il)=up23(i)

return

end

subroutine begin{(nt, nz, nx, index, delt, time)
nz=nt

index=4#nx

time=(nt-1. )*delt

return

end

subroutine files(ifilds,ifiel,ifirst)
logical #1 infil(50),0utfil(50)

data infil/‘/scr/bert/migfile’/

data outfil/’/scr/bert/migrated’/
ifilds=iopen{infil, )

ifiel=iopenf{outfil, 2)

ifirst=ifilds

write(b, 51)ifilds, ifiel, ifirst

format(lx, ‘ifilds ‘', i4, ' ifiel /,i4, " ifirst ‘', i4d)
return

end

subroutine finish(ifilds, ifiel,ifirst, ilast)
ichk=iclose(ifilds)

ichk=iclose(ifiel)

if(ifirst. eq. ilast) write(é,B2)
if{ifirst. ne. 1last) write(4,83)

format(3x, ‘I am done migrating. ')
format(3x, ‘'The output is in /scr/bert/migfile. 7)
format(3x, ‘The output is in /scr/bert/migrated. /)
return

end
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