STOLT'S STRETCHING FUNCTIONS

Allan Jacobs

We start with the wave equation in Cartesian coordinates and trans-
form to primed coordinates. The new system will take into account
the difference between real and apparent depths caused by the z-
dependence of velocity. The new system will also be a generalized
version of retarded time coordinates, in which the P'z'z' term is
Doppler shifted to zero, and in which the thin lens term is neg-
lectable.

The relevant transformation equations are
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Pp'(x',z"',t") = p(x,z,t)
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The second of these equations can be explained by building a
thin-plate model of the earth. We consider a plate at depth z,
below the surface and a point scatterer lying below it at depth
zz+zl . Assume that the velocity is Vo everywhere except inside

the plate, in which the velocity is v(z) Finally, call the

apparent depth of the scatterer zé+zl . We have using Snell's Law
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If we were to integrate these from 2z=z'=0 to =z , we would
get the total apparent depth of the point in the layered earth. In

other words

Note that v(z) = %%. , so that, for arrivals at time t ,

t
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Next, we use this new coordinate system to construct a new
version of the wave equation. Unfortunately, we will find that the
final result will have a complicated structure - the condition for
stopping the downward continuation of the geophones will be messy.

Using the chain rule, we obtain

P =P,
X X
1
P = p! ' ' . v(z) ' '
z = F 22t P et g 0 P 2t T v(z) P t!
= p? ' ' . pt
P = Pt P gz’ =P,
. 1 .
The wave equation P+ P =— P becomes, if
XX zZz V2 tt
dzvz(z) << A
A 2 1 1
0 =rp' . H— P' , , + P’ + p' - P’
XX v z'z 2 t't! ! Te!
( 0> v(z) v z't V(z)2 t't
v 2 2
= [} vy [} ‘. '
0=F" x'x! +<v0> P z'z' T 0 P z't’

The migration consists of changing the field P(x,z=0,t) to

the final field P(x,z=6(t'), t=0) where we have made use of the

equation:
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The stopping point is z=¢8(t') . An equivalent stopping point for
the apparent depth =z' is
-t ,Z
z'J A= l—'n(t') = 1—-% v(z) dz
t=0 v Vo _ ;
0 0 Yo 4z =68(t")
s(t")
2
Y — - '
n(t") v(z) dz Voo €

o



144

Thus in the primed coordinate frame we have a final, and complicated,

field of
s(t")
1 1 1 =_l__ ' LA dz
Pé,z von(t), t v (2)
o

Instead of this, it would be convenient if the final value of the
depth coordinate were proportional to the final value of the time

coordinate.

We therefore define a new depth coordinate d by the equation

where D(t') will be the new, and so far undetermined, time
coordinate. We will want to choose D so that the new wave
equation is nearly independent of velocity. We set

P'(x',z',t") = P"(x',d,D) = P"(x,d,D)

in which case
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The condition that our wave equation stay approximately independent
of v 1is equivalent to saying that the coefficient in front of the

P"dD be a constant and that all of the velocity dependence be dumped

into the P”dd term. We require that
v,D
0 d
—. 9 =V

which has a solution

| t'

D =\12 j n(t') de'

0

Migration now consists of changing the field at the surface

P'"(x,d=0,D) into the field at depth when t =0

P"(x,d=D,D»0)

The new version of the wave equation is found by using the

chain rule. We have

t
D = 2] n(t') dt’
0

so that

=
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The wave equation is, dropping primes,
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0= Pxx + W(x,d,D)Pdd + ZPdD

Generally the W Pdd is small, and neglectable if the dips are small,

so it is expedient to substitute an average value for W(x,d,D)

The new wave equation has a new dispersion relation. If we start
with a two way travel time axis in the unmigrated time section, this

dispersion relation is

2 .2 _
Wk,© + k" - ruky =0

where we have taken w,kd , and k to be the Fourier transform var-
iables of D,d , and x , respectively. Using this relation the

projection operator is of the form

exp [-1 (4 (/) - kw07
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The scaling factor in the FK integral also has its factors appro-
priately scaled by W

The computational strategy for setting a migrated time section is
straightforward. We simply calculate the value of n(t) at the surface,
where t=t' , and plus this function into the integral expression for

D(t') . This gives us a transformation before migration

p t

9 11/2
d=[25v (t)tdtJ
rms
0

After migration the section is in (x,d) space. But d=D in this
section, so we can use the mapping already constructed in the other
direction to get the wave field as a function of t' again. Getting

depth sections is another matter and involves some vertical ray tracing

and axis stretching.
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