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by David Brown

In this poper, the physical interpretation of various one-way
wave equations is d:scussed in terms of the WKBJ theory for asymp-
totic expansion solutions to the acoustic wave equation.

Begin by reviewing the derivation of the 15-degree equat ion
for constant velocity media. The acoustic wave equation may be written as

P_+P = (NS P (1)
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where for the moment, v is a constant. This equation may then be fac-
tored into two partst one for upgoing waves ond one for downgoing wavest
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To get the 15-degree equation, a simple approximation to the square-root
can be mades
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When the probtem is generalized to the case where the veIOCItg is a
function of both space variables, x and z, the factoriztion given
by equation (2) is not valid, because the velocity, v, and the space deri-
vative operators, 8 and 8 » do not commute. Cleorly, another approach
must be taken.

One pOSSIbIIITg is to develop one-way wave equations in terms of
the WKBJ asymptotic expansion solutions to the wave equotlon. WKBJ solutions
are valid when the wavelengths of the acoustic waves of interest are short
in comporlson 1o the nnhomogenentles of the medlum. In reflection sensmO|ogg
the opproprlote descrlptnon is that the velocntg is a “siowly varying func-
tion of x and z°. This method of solution is reviewed in the next paragraph.

To simplify the discussion, consider the acoustic wave equation
in one space-variablet
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= 2
Pzz = (1/v7) P". (S)

To soive this equation, assume that o solution exists which is of the
form

P(z,1) = exp(8(2)0, - 13,.). (6)

To find 8(z), assume that it may be expressed in terms of an asymptotic
expansion in 878

8(z) = A(z) + B(z)a" + ctzya™ + ... (7)

Once the functions A,B,C and so on have been determined, they can be
substntuted back into equctlon (6) to obtain an opproxnmotlon to the
30|u1|on of (5) or O|ternct|velg, the differentiai equotlon which will
give the osgmptornc expangion solution exactly can be derived. The latter
approach is taken here.

Begin by |n01ud|ng only the first term in the expons:on for
8(z), i.e. lot 6(2) A(z). Substituting into (6) and differentiating
twice with respect to z,

= 2
Pzz = (szaT + nza,'lp.

Substituting this into (S5), an ordinary differential equation for A resultss

e _ 2 =
(A (1/v7)la, . + QZZB'}P = 0. (8)

The coefficients of the different orders of 8, must individually be equal
to zero. This gives that

A, = *(/v)  (8a)

ond

A = ;(vZ/v) = 0., (9b)

The second relation indicates that this approximation is exact if the
velocity doesn’t depend on the spatial variabless the first equation can
be integrated to get A, which gives the first order WKBJ solution

to (5)¢

It is simple, as well, to get the one-way equation which will give (10)
as its exact solution. Toking one derivative with respect to z of (6),
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Pz = ﬂzatp,
or substituting from (9),
Pz = :(llv)P'. ti)

Compornson of (11) with (2) shows that this is just the one-dimensional
BQUIVOIGHT of the one-way equor:ons from which the more fomiliar
migration equations are derived.

Hugher-order asymptotic solutions and the corresponding one-way
differential equations can be obtained by inciuding more of the terms
in the expansion for 8 {equation 7). The generail form of the one-way equa-
tions will be

P, = (R, +B, +C2 +028"" +..,0P U2
where the coefficients A,B,C,D,... are determined by substituting the
expression
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into (5) and setting the coefficients of different orders of 8 equal
1o zero. The second-order asymptotic one-way equations and solutions
are given by

Pz = _-l;(l/v]Pr + (vzlale (13a)

and

Plz,1) = (v, sveiel fldzv) -1 (13b)

Inspect;on of equot:ons (10) aond (13b) ond solutions for hlgher-order
expans:ons indicates what the new terms in the one-way differential
equations mean. The first-order solution (10) expresses a snmple phase
delay as a function of time ond depth. The second order solut:on includes
first-order omplutude offects due to the changes in the veloc:tg of the
medium. If terms with coefficients which depend on C in the asymptotic
expansion are included, the corresponding correction term in the

equation will amount to a second-order phose correction in the solution,

due also 1o the variation of the veiocity with z. The differential equation
which results will be

2
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Pz = i(l/v)P’ + (VZ/EVJP :[IVZISVI (vzz/4l]8 P. (14)

The extension of this method of deveilopment of one-way equations to two
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spoce dimensions is quite difficuit. An alternate method for deriving
equations for the two-dimensional case is given by B jorn Engquist

in SEP-13. In that paper, the first-order amp!itude terms ond the

second order phase correction terms ore derived for the 1S5-degree equation.
The result is repeated belows

= (- t . t
8,P = [-(1/v)3.P + (v/B)BXXP] + [(vzlale + (VXIE]SXP]

2

+ ([(VZZ/4] - (vz

/811 + [v, /4) - (vEravi1ra'p (15)
Comparison with the one-dimensional case above allows identification of the
significance of the terms in this equations The first group of terms on
the right-hand side of the equation represent the first-order propagation
terms. The second group is the first—order amplitude terms, and the third
group represent the second-order phase correction terms. Engquist’s method
18 not Iimited in it’s agpplication 1o the 1S-degree equation. It appears
that at the moment, it is also the more tractoble of the two methods for
deriving higher-order one-way equations. The WKBJ approach can then be
applied to the one-dimensional probiem in order to identify the resulting
18rms.



