RMS VELOCITY ESTIMATION IN LATERALLY VARYING MEDIA

Walt Lynn

Introduction

Conventional velocity estimation techniques are based on coherency
measurements along hyperbolic moveout trajectories defined by Vons
[e.g. Taner and Koehler, 1969]. However, the normal moveout is sensi-
tive not only to the rms velocity, but also to its second derivative
beneath each midpoint. Where the earth is laterally homogeneous, the
effect of the second derivative is zero and is usually ignored even in
areas of lateral variation. Thus, in regions of lateral inhomogeneity,
the rms velocities obtained by conventional techniques often imply
absurd interval velocities.

In this paper we will develop two schemes which incorporate the
second lateral derivative into the velocity estimation. The first
works on common offset sections and the second on common midpoint slant
stacks. The latter is simply a linear moveout and sum of common mid-
point (cmp) gathers and has the advantage of better signal to noise
properties. We will discuss both the derivation and implementation of
these techniques and compare their results with velocity estimations
from a conventional semblance technique. Before discussing these,
however, we will first examine a set of synthetic cmp gathers over a

lateral velocity change to see why conventional techniques breakdown.
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(feet)

depth

An example of why conventional veloecity estimation techniques

fail in laterally varying media.

To demonstrate the effects of lateral velocity variations on measur-

ing Vins Ve will consider the model shown in Figure 1. This is essent-

ially the same model used by Pollet (1975) and consists of horizontal

beds extending across the entire section with the exception of a 200

foot low velocity layer (5400 ft/sec) which begins at y = 10000 and

continues to the right of the model. Synthetic seismograms were gener-—

ated using a ray tracing program to form a suite of 91 2400% cmp gathers.

The midpoint spacing and the offset interval are both equal to 100 ft.
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Figure 1 Model used to generate synthetic seismograms for velocity estima-
tion. A total of 91 cmp gathers (#'s 1-91) were generated using

a ray tracing program with locations shown at the top of the figure.

The cmp gathers are 24 fold with a midpoint and group spacing of
100 ft. Distance to the far offset is 5000 ft. The synthetic
traces consist of 3 sec. of 4 msec data. The two-way vertical

travel time to the reflectors outside of the low velocity layer are

given on the left. Notice the discontinuity occurs at cmp #43.
cmp #'s 30, 35,..., 55 are shown in Figure 2.
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Figure 2 shows several different cmp gathers along the profile. To
examine the effect of the truncated bed consider the event arriving at
approximately 2.14 seconds (corresponding to the interface at 8000 ft. in
Figure 1). On cmp #30 the event is hyperbolic because all of the raypaths
travel through the low velocity layer. Similarly, for cmp #55 the event
is hyperbolic because all of the raypaths for this gather miss the low
velocity layer. As the midpoint location moves from #30 to #35, the down-
going part of the raypaths (assuming the shots are to the left of the re-
ceivers) for the far traces miss the low velocity layer and the total move-
out is reduced. Consequently, the velocity estimate obtained by using a
coherency measure will be erroneously high [see Figure 3c]. The same is
true at cmp #40 where only the inner traces still travel through the low
velocity layer on both their downward and upward paths. At cmp #45, the
opposite is true, only the inner traces completely miss the low velocity
layer and consequently the velocity measured will be erroneously low be-
cause of the effective increase in moveout. cmp #50 has all but its far
offsets missing the low velocity layer and thus also shows a greater
amount of moveout than predicted by the true Voms

The semblances measured for velocities ranging from 6000 to 10000
ft/sec at tO =1.66 , 1.90, 2.14, and 2.60 and corresponding to the
events located at depths of 6000, 7000, 8000, and 10000 feet respectively
are shown in Figure 3. The white line connects the semblance maximums and
represents the velocity picks to these events. The effect of the truncated
bed is readily apparent in the large fluctuations in the velocity estima-
tions. One disconcerting observation is that the adverse effects of the
lateral velocity discontinuity increase with t0 , not diminish,

One possible means of reducing the velocity fluctuations, as discussed
by Pollet (1975), is to smooth the velocity function by performing a later-
al average on the velocities. The results from one such smoothing operator
are shown in Figure 4. The light line in each figure is the original esti-
mated velocity (corresponding to the white line in Figure 3) and the heavy
line is a smoothed version of it. 1In this example, 8 adjacent velocity
functions were averaged together followed by an averaging of 5 adjacent
smoothed velocity funtions. The smoothing did a good job of removing the

short wavelength velocity variations for tO = 1.66, but not so good for
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Figure 3. Velocity semblance measures on cmp's #24-69. The low velocity
zone discontinuity occurs at cmp #43 and its effect is seen as causing fluct-
uations in the velocity estimates. Ideally, the rms velocity should change
abruptly at cmp #43, being slightly lower on the right. The white line
connects the semblance maximum for each midpoint and represents the velocity
function one would pick across the section. t is the vertical 2-way travel
time. The t 's shown correspond to the interfaces at z = 6000, 7000, 8000,
and 10000 felt in Figure 1. ©Note the effect on the discontinuity increases
with to.
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Figure 4. Smoothed version of the velocity curves in Figure 3. The light
line in each figure corresponds to the maximum semblance line in Figure 3,
the heavy line is a smoothed version. Smoothing was done by averaging 8
adjacent velocities followedby an averaging of 5 adjacent smoothed
velocities. Only the velocity for t = 1.66 appears to be reasonable.

The later t 's would require much mofe smoothing to remove the large fluct-
vations. ' The problem is, however, how does one know when enough or too
much smoothing has been done?
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the later times. In fact, in order to smooth the curve at tO = 2.60
sec., we would have to average perhaps 80 - 100 adjacent midpoints.
Clearly there is a lot of subjectivity to smoothing. How can we
tell when we have smoothed enough, or too much? Moreover, how can we
tell what effects are due to structure and what are artifacts of the
velocity estimation procedure? In the next section we will see how to

attack this problem by including the effect of the second derivative

of the velocity at each midpoint in the velocity estimation.

rms velocity estimation in a laterally varying media

using common offset sections

The travel time to a given offset is dependent not only upon the
velocity beneath the midpoint but is also dependent upon the lateral
derivatives of the velocity. The most important of these is the second
lateral derivative. We will now develop a theory which incorporates the
effect of this derivative into the velocity estimation. The theory can
be applied to either constant offset sections or common midpoint slant
stacks. This section will discuss the application for the common offset
case. In the following section we will extend the method to work on
common midpoint slant stacks where the signal to noise properties are
better.

Consider the model in Figure 5 where the velocity above the horizon-

tal reflector at depth =z varies in the midpoint (y) direction.

A
h
v

v = v(y)

Figure 5
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To a first (straight ray) approximation, the travel time to a given

offset f 1is

£/2
£ w(y) dy
sin 6 ?
< —£/2

where 6 1is the angle between the ray and the vertical and w(y) =
1/v(y) 1is the slowness. Expanding w(y) in a second order Taylor

series about y = Y,

£/2
£ = L {A (w + yw' + ZE» w'") d
" sin 9 ) 0 y o) 2 o Yo
S-£]2
which gives
2 l 3 "
t = <ino [fwo + (£7/24) wo] s
or
1/2
£ Y (£2 ¥ 429 v+ (£2/24) W]

Thus, to a first approximation the travel time ¢t is independent of the

1

horizontal gradient, w , but does depend upon the second derivative

te

W as well as LA If w'' =0 , equation (1) reduces to the familar

hyperbolic travel time formula

1/2 9

1/2
e= )+ Q)] = () + D

Writing equation (1) in finite difference form using the (1, -

second derivative operator, it becomes

2 2 172
tj = (f7 + 4z7) [awj_l + (l—2a)wj + awj+l] s, 3=1,2,...,N,
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where a = f2/24Ay2

Equation (2) represents a tri-diagonal system of N equations for N
midpoints which can be quickly solved to yield w(y). tj is the travel time
to a given fixed offset, f, for the raypaths reflecting off a horizontal
reflector at some depth z. Ay is the midpoint spacing. The unat-
tractive feature in the equation is the presence of the variable z
the reflector depth. We will temporarily take 2z to be known. Later
we will show how it can be estimated and improved upon in an iterative
manner.

If we had noise free data, we would have no problems with using
\ g(wj_l - 2wj + wj+l)/Ay2 as our estimate to the second derivative

of the slowness. Since we do not, we will use instead

w' 2 (w._k - ZWj + wj+k)/(kAY)2’
where k 1is some integer number of midpoints greater than 1. The para-
meter k can be considered as a stability factor. In our tests so far
we have chosen it to equal the number of midpoints within 1/4 the
offset, i.e. kAy = f/4 [see Figure 6]. Because we are not using the
adjacent midpoints in estimating the second derivative of the slowness,
w' , but rather those at t 1/4 £ , we are imposing the restriction

that the second derivative be constant over 1/2 the offset used,

j-k j-1 j j+1 j+k
TS \ EE— y
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Figure 6. Raypaths to the offset f for the midpoints j-k, j-1, 7, j+1,
and j+k. k is chosen to be f/4Ay, where Ay is the midpoint
spacing.
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Using the above approximation for w'" , equation (2) becomes

2 1/2

2 1 1
tj = (f° + 4z7) [a'wj_k + (1-2a )wj + a Wj+k] s (3)

where a' = f2/(24k2Ay2)

In matrix form, equation (3) looks like

d 0 ¢
0

0
0,
(e}

c d c w = t (4)

where ¢ = a'(f2 + 422)1/2 and d = (l—2a')(f2 + 422)1/2 . The number

of zero diagonals between the main diagonal and the non-zero diagonals is

k-1 . This system of equations decouples into k independent tri-dia-

gonal systems of equations

- _ . - -
d c w, t,
i i
cde 0 Yitk bk
cdec w t
i+2k i+2k .
cde ) = . » 1 =1,2,...,k (5)
cdc : .
0 cdec
cdec
cdec
cdec
cd B
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and is easily solved. This is the system of equations used to estimate
the velocity for the constant offset case.

The constant offset velocity estimation scheme was tested on the
synthetic gathers generated using the model in Figure 1. The rms veloci-
ties to the four interfaces below the truncated bed are shown in Figure 7
(a-d) as the heavy lines. Superimposed, as a lighter line, are the
semblance results seen earlier in Figure 3. The velocities in Figure 7
were computed by first picking the arrival times at the 2000 foot offset.
The midpoint spacing is 100 ft. so the parameter k is equal to 5.

This gave 5 different sets of equations like equation 5. In order to
avoid instability and provide some coupling between the sets of equations,
the travel times, tj , were smoothed over 8 adjacent traces. The num-—
ber 8 is arbitrary. Averages from 3 to 15 were tried without much change
in the result. The known depth to each reflector was inserted into the
coefficients ¢ and d in equation (5).

The velocities for the layers at 6000, 7000, and 8000 feet (Figure
7a-c) are remarkably improved over the semblance measures. The fact that
there is some ripple in the velocity vs. midpoint curves is probably due
to the fact that the synthetic data does not satisfy the assumptions of
our model very well. That is, the velocity can not be accurately expres-
sed at each midpoint as a second order Taylor's series. The velocity to
the layer at 10000 feet is poor for the same reason.

The solution to equation (5) involves a knowledge about the depth
z to the reflector, which in general is not known. We can estimate the
depth in several ways. One is to use an average depth computed from tO s
the vertical two-way travel time, and the velocity estimated by doing
coherency measures with =z = vto/2 . However, to avoid the work of
doing coherency measures, we can estimate z by considering 2 different
constant offset sections. At a given midpoint the approximate travel

time tj to an offset fj is

2 1/2

2
t., = (£, + 4 .
i (f5 z") /vJ
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Figure 7. rms velocities to the reflectors in Figure 1 at a) 6000, b)
7000, c) 8000, and d) 10000 feet using equation 5. Light lines are
velocities computed using a semblance measure and are the same as the white
lines in Figure 3 (a-d). With the exception of d, the estimated rms vel-
ocity to these refectors is much improved over the semblance technique.

The ripple in the dark curves as well as the failure of the method in d)
are due to the fact that the model used to generate the synthetics vio-
lates a major assumption of the velocity being accurately expressable at
every midpoint in a second order Taylor's series expansion.
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Writing this equation for two different offsets and eliminating the

velocity we get

After computing =z for each midpoint, an average value can be used in
equation (5). The coefficients to the system of equations can then be
updated using the computed velocities and a second iteration of velocity
estimates can be made. This procedure is continued until convergence of
the velocity function.

One very foreseeable problem when applying the constant offset tech-
nique to real data is that of poor signal to noise ratios. Reflectors on
constant offset sections are often too weak to be picked with any high
degree of reliability. Consequently, it would be advantageous to work
with some sort of stacked section where the signal to noise ratio is
enhanced. 1In the following section we will extend the method presented
above to work on common midpoint slant stacks, that is, a linear moveout

and sum of common midpoint gathers.

rms velocity estimation using cmp slant stacks

In this section we will extend the ideas presented in the previous
section to estimate velocity using common midpoint slant stacks. These
are not to be confused with common shot or common receiver slant stacks
which correspond to a specific realizable experiment. A common midpoint
slant stack is nothing more than a stacking of cmp gathers along linear
moveout trajectories and does not correspond to any sort of realizable
experiment. As with common shot and common receiver slant stacks, the
main contribution to the stack for each event comes from the Fresnel

zone, the region of tangency with the linear moveout trajectory (Figure 8).
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Figure 8 Tangency method of estimating rms velocity. Vs is given

1
by fo/ptO or fo/p(to + pfo) . (see Claerbout (1977)).

The offset at which the Fresnel zone is centered increases with time so
common midpoint slant stacks are like a common offset section where the
offset increases with time.

The basis of the method to be presented is found in Schultz (1976)
and in Claerbout (1977). Referring to Figure 8, the rms velocity is ob-
tained from fo’ tos and p , where (fo,to) is the point of tangency of

the hyperbolic event with a line of slope p and is given by

2 _ '
Vims = fo/ptO = fo/p(tO + pfo) . (6)

The velocity information is now obtained from a Fresnel zone as opposed
to the whole range of offsets as with coherency techniques.

Now consider measuring Voms at several different p wvalues. To
a first approximation, the effect is to get the rms velocity along ray-

paths shown in Figure 9.

Figure 9 Raypaths for different p values sample different regions
below the midpoint.
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We can imagine designing an inverse procedure to get the rms velocity
for the entire area covered by the raypaths by using the rms velocity
information from a range of p wvalues (and hence offsets). Moreover,
if we combine this information with all of the other common midpoint
gathers we could obtain wv(y) for the entire section. This type of
approach is very similar to the x-ray tomographic imaging methods used
in medicine.

We will consider a much simpler case wherein we will examine only
one p value. Recalling equation (1) from the previous section and

writing t' = t - pf we have

L !
sin 6

[fw_ + (f3/24)wg] - pf . 7

4%

Using sin 6 pv, = p/wo gives

2 [w + (/200w - pf (8)

The known parameters in equation (8) are t' and p . The former is
picked from the slant stack and the latter is a constant for the entire
stack. The offset f could be measured by examining each individual

common midpoint gather, however, we can estimate it by using equation (6)

n, 2 2
f. = pv.t. = pv,(t! + pf.
J P JJ P J( J P J)

or
2'

n A pv.t.
f'=f___l2jz_’
J J 1-p"v

where the subscript j refers to the midpoint number. Equation (8) now

becomes
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A

[ J ] =2 " _
t! [wj + (fj/24)wj] pfj . (9)

Writing equation (9) in finite difference form, we have

a.w, + b.w. + c.,w, = d, 10
ji-1 j] ji+l i’ (10)
where
w.f?
a = ¢ ='—l4LTZ_ ,
J J 24pAy
w.f, f%
b, =117 -0 ,
] p 2
128y,
and
d,=t!+%.
is i TP

Equation (10) is analogous to equation (2) in the previous section and its
implementation proceeds in much the same manner, Since it is non-linear
in velocity it must be solved in an iterative manner. As in the constant
offset case, we can not depend on enough resolution from t' to approx-—
imate w'" using adjacent midpoints. Instead, we use the approximation

w' = Wj—k - 2wj + Wj+k » Where k is an integer greater than 1. As before,
k can be considered as stability parameter which attempts to suppress the
effect of noise in estimating the second derivative., To determine what

it should be, we use equation (6) along with the initial estimates of YV oms
to an event at each midpoint to obtain an average offset fave . We

then take k to be the number of midpoints contained within 1/4 fa .

ve
Again, the 1/4 is arbitrary.



Writing equation (10) using the above second derivative operator
we obtain k sets of independent tri-diagonal systems of equations like

equation (5):

The coefficients in equation (11) depend on the velocity so it is
necessary to have an initial estimate of the velocities to get the pro-
cedure started. One means of doing this would be to estimate the tan-—
gency offset for each common midpoint gather and apply equation (6).
Alternatively, we can estimate the velocity directly be performing two
different cmp slant stacks. The latter method is substantially quicker
and easier and works as follows.

Schultz (1976) demonstrated that hyperbolic events in offset, time
space map into elliptical events in p, t' space. The equation of the

ellipse is given by

2
! 2
=  + b o1, (12)
o
where tO is the vertical two-way travel time and t' = t - pf (see Fig-

ure 10).
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Figure 10 Mapping of hyperbolic events in (f,t) space into elliptical
events in (p,t') space.

Knowing t' and p for the same event at the same midpoint for two
different slant stacks, we can eliminate t in equation (12) and solve

for wv using
Tms

2 1/2
1 - (té/ti)
v = — . (13)

2
_ ' 1
1 (pltzlpzt l)

Figure 11 shows two different common midpoint slant stacks on the
synthetic data generated using the model in Figure 1. The stack in
Figure 1lla was produced by stacking the cmp gathers along a linear tra-
jectory with a slope of p = 0.0129 msec/ft. The stack in Figure 11b has
p = 0.0257 msec/ft. A close up of the events below 1.5 seconds are shown
in Figure 12. As an example, consider the event at ~2.1 sec and shown
schematically in Figure 13. Measuring t' for this event at each mid-

point for the two slant stacks and using equation (13) we obtain the
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Figure 11. Two common midpoint slant stacks of the synthetic data taken
from the model in Figure 1. Stacking was done along trajectories defined
by t=t' + pf, where p = 0.0129 and 0.0257 msec/ft in a) and b) respec-
tively. Now windowing or special weighting was done in the stacking.
Closeups of the stacks below 1.5 sec. are shown in the next figure.
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Figure 13. How to measure v from two slant stacks. t! and

t, are measured to a given event at the same midpoint for two dif-
ferent slant stacks. These, along with Py and P,, are inserted into
equation (13) to obtain Vons
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Figure 14. Results from computing an initial velocity estimate to
the event at 8000 ft. in Figure 1 using equation (13) (dark line).

Velocity estimates computed using a semblance technique are shown
as the light line.
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rms velocity estimates shown in Figure 14. The results are shown as the
dark line and are very similar to the semblance results in Figure 3c.
The velocity estimation using the two slant stacks is poorer, but that is
to be expected as only two data points are used to determine the velocity
as opposed to 24 in the semblance method.

Theoretically, we expect this technique to yield more satisfying
results than the constant offset technique because of the better signal
to noise properties of the stack. Unfortunately, at this time we have

no results using this technique because of some instability problems.

Conclusions

Normal moveout to a event is sensitive to both the rms velocity and
the second lateral derivative of the velocity beneath the midpoint. Where
the earth is laterally homogeneous, the effect of the latter term is
negligible and is usually ignored even in areas of lateral variation. At
midpoints where this term is significant, absurd interval velocities can
be explained if the second lateral derivative has been ignored.

In this paper we have developed a theory which successfully accounts
for both the rms velocity and its second lateral derivative beneath each
midpoint. The effect of the first derivative is negligible. The velocity
estimation procedure works with either two common offset sections or two
common midpoint slant stacks.

The results in Figure 7 from the constant offset scheme are remark-
ably good. Only on the deepest reflector does the method give poor results.
This is due to the poor approximation of the velocity as a second order
Taylor's series. This is of no large consequence as we can downward
continue the experiment below the low velocity layer using the velocities
obtained for the events directly below the truncated bed. The velocity
to the interfaces below can then be reestimated with the effect of the

low velocity layer removed.
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