## RECONSTRUCTION OF A WAVEFIELD FROM SLANT STACKS

## Jeff Thorson

The  $slant\ stack\ Q$  of a two dimensional wavefield P(t,h) is defined as

$$Q(t,p) = \int_{-\infty}^{\infty} P(t+ph,h)dh . \qquad (1)$$

In particular P(t,h) may represent a common midpoint gather where t is time and h is trace offset from the midpoint; Q(t,p) then represents the summed traces whose zero times have been shifted by an amount  $p \cdot h$ .

Theoretically P may be regained from Q by the relation

$$P(t,h) = \frac{1}{4\pi^2} \iint_{-\infty}^{\infty} F_{Q}(\omega,p) e^{-i\omega(t-ph)} |\omega| d\omega dp . \qquad (2)$$

 $\boldsymbol{F}_{\boldsymbol{Q}}(\boldsymbol{\omega},\boldsymbol{p})$  is the Fourier transform of Q(t,p) with respect to t .

In the time domain equation (2) may be rewritten as

$$P(t,h) = \int_{-\infty}^{\infty} Q(t-ph,p) * \left[\frac{1}{2\pi} M_{\Omega}(t-ph)\right] dp$$
 (3)

where \* is convolution with respect to time,  $\,\Omega\,$  is a cutoff frequency applied to the data, and  $\,M_{\,\Omega}\,$  is defined to be

$$M_{\Omega}(t) \stackrel{\Delta}{=} \Omega \frac{\sin \Omega t}{\pi t} - \frac{2 \sin^2(\Omega t/2)}{\pi t^2}$$
 (4)

Equations (2),(3),(4) are derived in the following sections.

Double Fourier transform P(t,h) into  $F_p(\omega,k_h)$ :

$$F_{p}(\omega, k_{h}) = \int_{-\infty}^{\infty} P(t, h) e^{i\omega t} e^{ik} h^{h} dt dh$$
 (5)

Change variables of integration:

$$t = t' + ph$$
  
 $h = h$ 

The Jacobian of the transformation is

$$J = \begin{vmatrix} 1 & P \\ 0 & 1 \end{vmatrix} = 1 ,$$

and by the change of variables, equation (5) becomes

$$F_{p}(\omega,k_{h}) = \iint_{-\infty}^{\infty} P(t'+ph,h)e^{i\omega(t'+ph)}e^{ik_{h}h} |J| dt'dh$$

$$= \iint_{-\infty}^{\infty} P(t'+ph,h)e^{i\omega t'}e^{i(k_{h}+\omega p)h} dt'dh$$
(6)

Let  $k_h = -\omega p$  . Then (6) becomes

$$F_{p}(\omega,-\omega p) = \int_{-\infty}^{\infty} P(t'+ph,h)e^{i\omega t'} dt'dh$$

$$= \int_{-\infty}^{\infty} Q(t',p)e^{i\omega t'} dt'$$

by equation (1). Therefore we have the relation

$$F_{\mathbf{p}}(\omega, -\omega_{\mathbf{p}}) = F_{\mathbf{Q}}(\omega, \mathbf{p}) \tag{7}$$

which is similar to the Central Slice Theorem in Fourier Optics Theory. [see Swindell]. Q(t,p) can be thought of as a projection of P onto the time axis h=0 . Relation (7) then states that the two dimensional Fourier transform of P evaluated along the line  $k_h$ =- $\omega p$  is simply the Fourier transform with respect to time of its projection Q(t,p) .

To reconstruct P from Q a method similar to rho filtering and back projection in Fourier Optics may be used. Back projection is a method by which an image may be reconstructed from its projections in different directions. The analogous procedure of reconstructing our original wavefield P by "back projecting" the slant stacks is described below.

Slant Stack Inversion

Inverse Fourier transform  $F_p(\omega, k_h)$  into P(t,h):

$$P(t,h) = \frac{1}{4\pi^2} \iint_{-\infty}^{\infty} F_p(\omega,k_h) e^{-i\omega t} e^{-ik_h h} d\omega dk_h$$
 (8)

Again change variables of integration [see Apostol sec. 10-9]:

 $\omega = f_{1}(\omega, p) \stackrel{\triangle}{=} \omega$ 

so  $|J| = |\omega|$ .

$$\begin{aligned} k_h &= f_2(\omega,p) \stackrel{\triangle}{=} -\omega p \quad , \\ \\ \text{Jacobian J} &= \left| \begin{array}{ccc} \partial f_1/\partial \omega & \partial f_1/\partial p \\ \\ \partial f_2/\partial \omega & \partial f_2/\partial p \end{array} \right| = \left| \begin{array}{ccc} 1 & 0 \\ \\ -p & -\omega \end{array} \right| = -\omega \quad , \end{aligned}$$

Then upon substituting the change of variables into (8):

$$P(t,h) = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} F_p(\omega,-\omega p) e^{-i\omega t} e^{-i(-\omega p)h} |\omega| d\omega dp$$

Use (7):

$$P(t,h) = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} F_{Q}(\omega,p) e^{-i\omega(t-ph)} \left| \omega \right| d\omega dp$$
 (9)

which is identical to (2), which was to be proved.

The Jacobian J vanishes over the line  $\omega=0$ . However since the measure of the subset  $\{(\omega,p):\omega=0\}$  is zero, integral (2) remains well defined [Apostol sec. 10-9], even though J vanishes over this set.

The steps taken to reconstruct P from Q using (9) may be summarized:

- a) Fourier transform  $Q(t,p) \rightarrow F_{Q}(\omega,p)$
- b) Multiply by  $|\omega|$  ("Rho Filtering") Since the inverse Fourier transform of  $|\omega|$  doesn't exist, and to ensure convergence of integral (9), we can use in place of  $|\omega|$  the filter  $|\omega| \prod (\omega/2\Omega)$ , where

$$\prod \left(\frac{\omega}{2\Omega}\right) \stackrel{\Delta}{=} \left\{ \begin{array}{ccc}
1 & |\omega| & \leq \Omega \\
0 & |\omega| & > \Omega
\end{array} \right\}.$$
(10)

 $\Omega$  represents a cutoff frequency and may be set to the Nyquist frequency of the sampled data. Now

$$|\omega| \prod (\frac{\omega}{2\Omega}) = \Omega \prod (\frac{\omega}{2\Omega}) - \Omega \Lambda (\frac{\omega}{\Omega})$$
 (11)

where 
$$\Lambda \left( \frac{\omega}{\Omega} \right)^{\frac{\Delta}{\Delta}} \quad \left\{ \begin{array}{ccc|c} 1 & - & |\omega| & |\omega| & \leq & \Omega \\ & 0 & & |\omega| & > & \Omega \end{array} \right\}.$$

Define

$$\begin{split} \mathbf{M}_{\Omega}(\mathbf{t}) &= \mathbf{F.T.}^{-1} \left\{ \left| \omega \right| \; \prod \; \left( \frac{\omega}{2\Omega} \right) \right\} \\ &= \frac{\Omega \; \sin \; \Omega \mathbf{t}}{\pi \mathbf{t}} \; - \; \frac{2 \; \sin^2 \; \left( \Omega \mathbf{t} / 2 \right)}{\pi \mathbf{t}^2} \; , \; \text{from (11)}. \end{split}$$

- c) Inverse Fourier transform  $F_Q(\omega,p)[|\omega| | |\omega|]$  to obtain a function Q'(t-t,p).
- d) Integrate (or "Back project") to get

$$P(t,h) = \int_{-\infty}^{\infty} \frac{1}{2\pi} Q'(t-ph,p) dp$$
 (12)

Note (12) is in the form of a reverse slant stack.

With the definition of  $\,{\rm M}_{\widetilde{\Omega}}\,\,$  in paragraph (b), see that by the convolution theorem

$$\begin{split} \frac{1}{2\pi} & \int_{-\infty}^{\infty} & F_{Q}(\omega, p) \; |\omega| \; \prod \; (\frac{\omega}{2\Omega}) e^{-i\omega t} \; d\omega \\ & = F.T.^{-1} \left\{ F_{Q}(\omega, p) \; \cdot \; |\omega| \; \prod \; (\frac{\omega}{2\Omega}) \right\} \\ & = Q(t, p) \; * \; M_{\Omega}(t) \qquad (*=convolution) \end{split}$$

With this result (9) may be rewritten as

$$P(t,h) = \frac{1}{2\pi} \int_{-\infty}^{\infty} Q(t-ph,h) * M_{\Omega}(t-ph) dp$$

which is (3).

## REFERENCES

- [1] Apostol, T. M., Mathematical Analysis, Addison-Wesley, 1957.
- [2] Bracewell, Ron, The Fourier Transform and its Applications, McGraw-Hill, 1965.
- [3] Swindell, William and Harrison H. Barrett, "Computerized Tomography," *Physics Today*, Dec. 1977, pp. 32-41.