RETARDED SLANT-MIDPOINT COORDINATES

Jon Claerbout and Walt Lymn

Here we will define a coordinate system for reflection seismic data
which is organized about the shot/receiver midpoint. Time is moved out
linearly with offset and it is retarded so as to remove all shifting terms
from the downward continuation equation. Although a data processing app-
lication has not yet been completely defined, the following advantages

and disadvantages are forseen:

ADVANTAGES

e Wide angle propagation

e Accurate low order schemes

e Unlimited range of velocity v(z)

® Processing done in midpoint-offset space
® One pass

® Simultaneous migration and velocity estimation

DISADVANTAGES

¢ Migration concurrent with stack, not before
¢ Data access alternates between midpoint and offset
® Lateral velocity problem not addressed

e Multiple reflection problem not addressed
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Downward continuation of both geophones and sources may be done
in many possible coordinate frames. Linear moveout amounts to organi-
zing the coordinate frame about some particular Snell's parameter p
This in turn achieves the practical advantage that data from rays near
this Snell's parameter can be accurately handled with low order approx-
imations. Naturally, rational expansions of the square root operator
allow arbitrary propagation angles (up to 90 degrees) at the cost of
increased numbers of terms. But why consider p values other than
p=0 ? Essentially, the reason is that wide angle rays will generally
be present even where the earth has no dip. Choosing pv to be in the
midrange of angles, say 25 degrees, then a simple second order differ-
ential equation might very well be able to contend with the typical
zero to fifty degree range of angles in a velocity analysis.

The definition of the coordinate frame is motivated by the diagram

in Figure 1 and is given by
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y = midpoint
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Although the coordinate transformation depends on the angle 6 , it
should be understood that in the final analysis these dependencies are
eliminated by Snell's law pv(z) = sin 6(z) . The definition of re-
tarded time is by no means obvious. The two integrals account for the
travel time from the surface to the shot and receiver depths along the
slanted paths and the 2ph term is the linear moveout. That it is cor=
rect will be seen later when the att and ayt shifting terms cancel
from the downward continuation equations. The equations (1) are a coor-
dinate transformation from data coordinates (y,h,t',Z) to wave equation
coordinates (g,s,t,z) . Really the equations (la~le) are implicit def-
initions of the coordinates (y,h,t',Z) which we wish to use to reference

our data. The Jacobian of the transformation (1) is given by the partial

derivative matrix
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Performing the partial differentiations in (2) we get
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A nice property about this Jacobian is that it is a function of v(z)
and p through Snell's Law but it is not a function of the independent
variables (g,s,y, or h) . This will mean later that when taking second
derivatives we will not be generating a vast number of low order terms.
Also it may be noted that we are not carefully distinguishing v(zs)
from v(zg) because at a later time we will set z equal =z . It
can readily be verified that the inverse Jacobian is given by the matrix

of
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We have the usual statement that different mathematical functions describe

the wavefield in different coordinate systems

P(t,g,s,zg,zs) = Q(t',y,h,Zé,Zé) (5)
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The chain rule for partial differentiation says that it is the transpose

of the matrix (4) which helps us convert the wave equation from physical

coordinates to data coordinates, namely
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The wave equation for geophones is
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Study of (7a) and (7b) shows that coefficients of Bi,, d and at'h

t'y>
all vanish identically confirming our earlier assertion that equation
(1) is a correct definition of retarding coordinates. Low order square

root approximations are obtained by simply neglecting the Fresnel terms
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Now let us push downward shots and geophones simultaneously, namely,

choose
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Equation (10) is the basic equation for downward continuation of unstacked

data. Define a common midpoint slant stack by S , namely

S(y,t',2) =/JfFQ(Y,t',Z,h) dh (11)

Integrating (10) over offset we see that a stack can be migrated with the

equation

Szt' = - —‘—3*‘ S (12)
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STOPPING CONDITION

When the shots and geophones have been downward continued to the

appropriate depth we have

t=20 (13a)
g =s (13b)
zg =z =z (13c)

In other words the reflection coefficient at (y,z) is seen at zero travel
time on the shot-geophone combination located at (y,z). Combining equations
(1) and (13) we have
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which is the stopping conditions for the downward continuation. To get

an equation for velocity estimation we use (13b,c) and (1lb,c) to get
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which using (1l4a) for dt'/dz gives
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Equation (14b) provides the possibility for doing velocity analysis
as migration proceeds. This equation defines a line h(t') on a common
midpoint gather. On surface data this line is a line connecting the tops
of the skewed hyperboloids. (See How to Measure RMS Velocity with a
Pencil and a Straightedge, SEP 11 pages 41-44). The interval velocity
at time t' 1is exactly and readily obtained by differentiating (14b) with

respect to t' getting ht' , then solving for v(t') getting

1/2
(15)

Interval velocity can be determined after migration by searching the com-
mon midpoint gather (kh,t') space] for maxima (which were hyperboloid
tops before migration). Connecting two maxima gives an estimate of ht' =
dh/dt' which can be inserted into (15) to determine the interval velocity
between the two events. In this way velocity estimation can take place
during downward continuation so that in principle both the velocity and

the migrated section is simultaneously determined.



