DOWNWARD CONTINUING CONSTANT OFFSET SECTIONS
A PARADOX AND FOUR GUESSES

Jon Claerbout

The downward continuation of shots and geophones proceeds with
vertical wave number kz given by a cosine at the shot and a cosine

at the geophone, namely
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where G 1is the sine of the emergent angle, namely vkg/w in Fourier
Transform space and S likewise relates to the sine of the angle at
the shot. It was earlier shown [Migration in Slant-Midpoint Coordin-
ates] that with an angle sine definition for midpoints Y=vky/2w and

one for half-offsets H=vkh/2w that (la) becomes
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Equation (1) refers to downward continuation of all offsets. The
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presence of H implies an offset derivative, that is, it implies that
a constant offset section with half offset h cannot be downward con-
tinued without knowledge of the constant offset section with half off-
set equal h + Ah . This is an apparent contradiction to the common
knowledge that an impulse in midpoint-traveltime space is known to
migrate to an ellipse with one focus at the shotpoint and one at the
geophone. A differential equation (11-3-19) in FGDP on page 252 does
however purport to downward continue constant offset sections. Track-
ing down the derivation of the FGDP equation we discover that the off-

set derivatives have been said to be insignificant by the fact that a
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normal moveout correction was made. This can be exact for horizontal
bedding but it is only an approximation otherwise. In contrast the
common sense ellipse solution clearly extends to angles up to ninety
degrees. Why does wave theory seem to fail to predict this common
sense result? I am guessing that we can achieve the desired ellip-
soidal curve by means of an appropriate elimination of H from equa-
tion (1b). I will provide a succession of four guesses for the sub-
stitution for H . Hopefully the final guess will be valid for all
offsets and dip angles.

As we seek to find an exact equation to downward continue the
constant offset section we should understand from the beginning that
the equation, if we find it, is not likely to be a Zocal function of
velocity. By this I mean that downward continuation from zg to zq + Az
is not likely to be a function of v(zo) alone but of v(z) for all z.
First let us review why downward continuation of a common midpoint slant
stacked section is local and then review the reasons why downward con-
tinuation of a constant offset section seemingly cannot be local.

The common midpoint slant stack can be downward continued by a
local operation, namely BZP = ikzP where kz is given by (1b) in which
the slant angle determines a numerical constant value for H and v=v(z)
is the local velocity. Migrating a delta function on a constant offset
section to an ellipse in a constant velocity medium gives no clue as to
whether it is local velocity or global velocity which is required. The
approximate procedure of FGDP equation 11-3-19 has small errors if and
only if it is possible to do a good normal moveout correction of the
data. The consequence is that for even the first 100 meters of down-
ward continuation into the earth in principle we need to know the vel-
ocity for all possible depths.

From the point of view of practical migration of primaries in
stratified media the non-local property of downward continuations of
constant offset sections may or may not be particularly troublesome.
However, from the point of view of fundamental theoretical studies
to learn how to cope with lateral velocity variation, time-to-depth
conversion, statics, diffracted multiples, etc., the extra problems of
a non-local downward continuation make the constant offset section an

unattractive creature.
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Now let us return to the problem of finding a downward continuation
equation for constant offset sections in homogeneous media. A check on
our proposed equations is whether the wave fronts (in a group velocity
sense) turn out to be ellipses. In the midpoint-offset fourier domain we

have
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Points of stationary phase in (y,h) space are found by setting to zero

ay\y and 3h‘i’ . Accordingly
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Our strategy is to replace H in (1b) by something which in some
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sense approximates H without actually having the need for kh with its
implied coupling of different offsets. The zeroth order guess is to
replace H by zero which is to migrate all offsets as if they were vert-
ical stacks (stack without moveout). The first order guess is to think
about the flat earth in which the stepout on a common midpoint gather,
namely vH , is a predictable function of time t and half-offset h .

Given the flat earth travel time equation

Vi = 22)?% + on?

we may differentiate with respect to h at constant 2z obtaining

peY2t _2h 3)



68

Thus the first order guess is to substitute (3) into (1b). Immediately
we recognize another disadvantage of the constant offset section compared
to the slanted stack. The slanted stack has a simple numerical value for
H in (1b) and the migration, it turns out, can readily be done by a
Stolt-like frequency domain method. On the other hand the insertion of
(3) into (1b) implies a differential equation with time variable coef-
ficients which makes frequency domain migrations cumbersome and approx-
imate.

The fundamental difficulty with using (3) to predict stepout as a
function of offset and travel time is that (3) is not valid in the pre-
sence of dipping reflectors. This suggests the second order guess. In
a dipping earth the slopes of the hyperboloids will generally be less
than those predicted by (3). Experienced seismologists are all familiar
with a cosine dip correction to velocity to create the best stacking
velocity. Luckily the dip information is contained in the sine like

quantity Y . Thus the second order guess is
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At the time of this writing it is not clear that this guess is not exact,
that is, that (4) substituted into (1b) does not give the desired ellip-
soidal group velocity curves. Before this test has been made a third
guess has been made which hopefully is even more accurate than (4).

First we need Clayton's geometrical construction
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First check that the sums of the interior angles of the triangles are

all 180 degrees. Then we have the trigonometric identities

sin (O + ¢)

sin © cos ¢ + cos © sin ¢ (=G) (5a)

sin (@ - ¢)

sin © cos ¢ - cos © sin ¢ (=-%) (5b)

Consider a plane wavefront with incident angle © + ¢ near the geophone.

vdt
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The travel time increases with g in such a way that

8,98 _ sino + ¢) (6a)
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Likewise at the shotpoint the travel time decreases as s increases

according to the sine of the takeoff angle 0 - ¢

4

sfy g§'= ~ sin(0 - ¢) (6b)

Recall the definitions of shot point and geophone point in terms of

midpoint y and half-offset h

g=y+h (7a)

s =y —-nh (7b)
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With (6) and (7) equation (2a) becomes

~
qovat _v ot ag ) as
23h 2 g dh  9s 3h
s s 8

v (3t _23t
H_2<3g Bs>

_1 _
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H = sin 0 cos ¢ (8a)

Likewise

=¥ 9t _ .

Y = 7 3y cos O sin ¢ (8b)

What we are basically after is a substitution for H in terms of things

like Y, v, h, and t . Solve (8b) for sin ¢

Insert this into (8a)

, v 9 1/2
H = sin © 1- (k
i cos 0O
L .
Finally, associate sin © with the flat earth guess 2h/vt . Thus we
have the third guess
: 1/2
2h 2 [ 2m 2] )Y
H = :I.E 1-Y% -z'l - <E> ; (9)
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It now remains to do the computational check that insertion of (9) into

(1b) actually does provide a dispersion relation with an ellipsoidal shape.
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Epilogue

Rob Clayton has determined that all these guesses do fail to
give an ellipsoid. Thus we have not yet won our game of offset
stepout prediction. Retrospectively it seems to me that the trouble
may have originated in equation (2) . The trap may be in what is

to be held constant in the differentiation. A better guess than (2)

might be
v Bt)
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