COMMON MIDPOINT MIGRATION

Robert Clayton

The operations of stacking and migration may be viewed as parts
of an overall process whose input is a surface recorded wavefield
P(y,h,z,=0,t) , where y and h are midpoint and half-offset of
the source and receiver locations respectively. The output is an
image wavefield P(y,h=0,z,t=0) , which is proportional to the re-
flectivity c(y,z) . Stacking is generally considered to be the
part of the process which collapses the offset dimension, while migra-
tion downward continues the wavefield to remove diffractions and move
dipping events to their correct location.

In conventional processing the stacking is done first to reduce
the volume of data, and is followed by a zero-offset migration scheme.
The key assumption here is that the stacking actually does generate
a zero offset section. Since stacking is based on a horizontally
layered earth, one would expect problems with this approach for
dipping events and diffractions.

This has led to processing schemes which attempt to remove these

difficulties by migrating first to remove diffractions and dip effects

and then stacking. In FGDP an equation (equation 11-3-18) for down-
ward continuation (DC) of constant offset sections is presented.

Both of these approaches are approximations to an exact imaging
method which stacks and migrates simultaneously. In this paper we
examine the exact method in the Fourier domain, where the DC formulae
are easier to derive. Our purpose is to derive constant offset migra-
tion equations which are valid for large dips and offsets. We present

two such approximations in the Fourier domain. We have not as yet
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found time and space domain expressions for these operators.

To begin, we consider the wavefield in the coordinate system of

the actual experiment, that is, in shot-receiver space.

In this coor-

dinate system the wave equation governs the downward continuation of

the fields.

The downward continuation operator in midpoint-offset

coordinates can then be found by a simple coordinate transformation.

This somewhat circuitous route for deriving the DC operator in mid-

point offset coordinates is necessary because a CMP gather cannot be

considered as a physical experiment,

not strictly apply.

and hence the wave equation does

Downward continuation in the shot geophone coordinate system means

that we are lowering the entire experiment to a new datum level below

the surface.

level, and then lower the shots.

Figure 1. We define the recorded wavefield as
where g and s are the spatial locations of
and z and z, are their respective depths.

tion of the geophones to a depth =z

To do this we first lower the geophones to the new datum

The sequence of steps is shown in

P(g,s,zg=0’zs=0’t) b
the geophones and shots,
The downward continua-

in a constant velocity medium is

given in the Fourier domain by the following equation:

Pk ,k ,z =z;z =0,w) =
g s 8 S

where k , and ks
geophone wavenumber (vkg/w) .

To downward continue the shots
realize that the recorded wavefield
source location and that changes in

sourc~ !ncation are governed by the

continuation of the sources to a level =z

already at that level is given by

P(kg,ks,zg=z zs=z,w)

l,

are the duals of g

= P(k ,k
g’’s

1/2

i % (1-¢% =z (1)

Pk ,k ,z =0,z =0,w)e
& s 8 S

and s , and G normalized
to the new level, one only need
is a continuous function of the
the wavefield due to changes in
wave equation.

Hence, the downward

, when the receivers are

2 1/2
i L (1-8% 2
v
,zS=0,w)e

(2)
,zg=zl
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Down ward Continve G’eophones

Doewnward Continve Shets

Figure 1. Downward continuation in shot - geophone space
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where S 1is normalized shot wavenumber (vks/m) . The same result
for DC of the sources can be achieved by invoking a reciprocity argument.
Once the geophones are at the new datum, we can interchange the wave-
fields at the shots and geophones by reciprocity, and DC the 'new" geo-
phones. Then we once again interchange the wavefields to return to
the original configuration. The net result is a DC operator for shots
which is identical to the one above.

The shot and geophone DC operators can now be combined into one

operator, which extrapolates the entire experiment to a depth z

, 1/2 , 1/2
i L 1-69 + (1-89) ]z
P(kg,ks,z,w) = P(kg,kS,O,m)e v (3)

In this equation we dropped the distinction between z and zg be~
cause we only consider moving the shots and geophones to the same level z
The shot-geophone DC operator has the nice property that it is separ-
able in the transform domain. That is, after the transform the geophone
part of the operator can be applied, and then the shot part applied. This
property is not true in the time domain where the differential equation
has the form
- if P +2P

zztt zzgg +2Pzzss =0 (4)

P + P + P -
2222 ggeg ss8ss ssgg

This differential equation is obtained by noting that the argument of

the exponential in equation (3) defines the dispersion relation of the

DC operator and hence may be inverted in the normal manner. The presence
of the fourth order differential in 2z indicates that there are four
combinations of shots moving up or down, and geophones moving up or

down. The Fresnel approximation of the DC operator
+2p Y 4+p ) =0
v (5)

is also not separable, except by an approximate splitting method.
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To obtain the DC operator in midpoint-offset coordinates we apply

the transformation

g=y+h , s=y-nh (6)

where y is midpoint, and h is half offset. 1In terms of the normal-

ized wavenumbers the transformation is

G = S = (7)

With this substitution the DC operator in frequency domain is

i Lo (Y,H)z

_ v
P(ky,kh,z,w) = P(ky,kh,O,w)e (8)
where
[ , 5 1/2 . g 1172
I /v ps
@(Y,H)*il— Y+H> RPNy (9)
2 2 i
L | 2 \ /

In Figure 2 the dispersion relation of this operator is shown. This
operator is no longer separable in the transform domain. This means
that the operations of migration and stacking have to be done simul~-
taneously and that a full three dimensional Fourier transform of the
data is required to downward continue the wavefield. For economic
reasons we would like the migration process to be independent of offset
derivatives or wavenumbers. This would allow constant offset sections
to be migrated independently of each other because the offset would
enter only as a parameter in the process. We can check whether this

is possible by forming a stationary phase approximation of the inverse

Fourier transform of equation (8).

P(Y’hQZ’t)

u itz -1 (k v+ h-wt)
\
}; P(ky,kh,O,w)e e dkydkhdw (10)



26

0.0

| | 1 1 ] 1 1 1
0.2 0.4 0.6 0.3 1.0 1.2 L.4 1.6 1.8 2.0

Y - midpoint w.n.

Q

*
Q

Figure 2. The dispersion relation for the exact downward continuation
operator is shown. Each curve is a plot of normalized vertical wave-
number versus normalized midpoint wavenumber, for a fixed offset

wavenumber.



The main contributions to the integral occur when the derivative of
the argument of the exponential is zero.

which define the locii of arrivals.
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from these three equations leads to
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This leads to three equations

(11)

(12)

(13)

(14)

(15)

space which is perhaps more easily

(16)
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This implies that a point in h-t space migrates to an ellipse in the
y-2z space. Since the stationary phase approximation is equivalent to
geometric optics, this result can be considered to be the non-zero off-
set, geometric optics method.

This result gives some encouragement to attempt to derive a wave
operator which has this property of being independent of offset deriva-
tives. We will approach this by finding some approximations to the DC
operator ¢ (equation 9), which separate into two parts: one which
depends only on Y (the migration operator), and one which depends
only on H (stacking operator).

Before proceeding with the analysis the DC operator in the trans-
form space it is necessary to develop a few geometric relations of
dipping beds with offset sources and receivers. Figure 3 depicts the
situation to be considered. First we find a relationship between the
ray angles at the source and receiver (YS and yg) and the dip angle

(¢) and the offset angle (R . From Figure 3 one can see that

Figure 3. Illustrated is the geometry of an offset source and

receiver over a dipping bed: The dashed lines are constructions
to aid in the proof.
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Yo = Bt oo Yg = B-a (17

The sine.of the angle we identify as the normalized geophone wavenumber

G , and similarly S = -sin Vg - In the latter case we use a minus sign
so that both angles rotate in the same direction. Now applying the trans-
formation of equation (7) we can obtain an interpretation of Y and

H in terms of the dip and offset angles.

Y =2 sin o cos B

2 sin B cos o (18)

s
Il

One final result to be obtained from Figure 3 is that

sin B =-%%>cos o (19)

Now consider two limiting cases of the DC operator. The first is

the zero dip limit and by equations 8 and 9, with a=Y=0 , we have

2 1/2
¢ (0,H) = 2 [1 - (H/2)7] (20)

A stationary phase approximation of the integral

v i 2 $(0,H)z -i(k, h-wt)
tUoP(k Lk ,0,0)e ¥ e D dk, du (21)
\2] y, h*? h

—-—00
results in the usual normal moveout time equation

1/2
vt = 2 (22 + h2) (22)

Hence, equation 20 may be viewed as the Fourier domain counterpart of
the stacking operator. If a dipping layer is present then the same

operator may be used but with a change in the definition of H
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In this case

BH' = = 2 sin B (23)

where v' = v/cos o . In other words we simply correct the velocity by

the cosine of the dip.
The second limiting case is that of zero offset. With H=0 |,

the DC operator becomes

9 1/2
¢ (Y,0) =2 [1- (¥/2)7] (24)

with Y = 2 sin o« . 1In the same manner that a dip correction was applied
in the stacking, we can apply an offset correction to the migration by

changing the definition of Y to

Y= — Y 2 sin o (25)

with V' = v/cos B . The dispersion relation for the migration operator

becomes

. - 1/2

w o 1_/v'k§32£
kz = 2 3 §1 Z\ w / : (26)

L i

The Fresnel approximation of this relation is

" : 1 v'k \

= —— i —_ —— ) §
K, =23 gl 8 w / (27)

L

Converting to a differential equation and using a retard time coodinate

to remove the shifting term we have

\4

= P
yy 4 cos Byy (28)

v
Pzt A P
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If we assume a small dip - small offset situation then this equation is
equivalent to the one given in FGDP (equation 11-3-18). First expanding

the cos factor in a Taylor series we have

-y 1
Po.=7 [1+3 fB]Pyy (29)

For small offset we have by equation (15)

_2h
6=t

Hence,

' 2
=Y 1/2h
Pzt T4 {1 + 2 (v;>

There is unfortunately still at this time an unreconciled factor of 1/2

Pyy (30)

difference between this equation and equation (11-3-18) in FGDP.
Another approach to separating stacking from migration in the DC
operator of equation (9), is to attempt to approximate H itself in
the Fourier domain. The approach may seem a little ad hoc but there
is an interpretation in the time-space domain. If H is approximated
by a function that is independent of kh and w , then this is a slant

stack in h-t space. For example, if

then
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The characteristic of this equation is

which is a slant stack trajectory. One can see that by approximating H
we are biasing our migration about a particular offset defined by the
Fresnel zone of the slant trajectory. This approach would appear to be
distinctly better than the method of equation (30) which is biased about
zero offset.

As a first guess we might consider taking H to be

H=— (31)

By examining equations (15) and (16) one can see that this is a small dip
approximation. A reasonable way to judge the accuracy of the approxima-
tion is to compare the group velocity of this operator with the ellipti-
cal one of the exact operator. In the appendix the procedure for comput-
ing group velocity curves is shown and in Figure 4 the results are shown.
As one might expect the approximation fails at large dip angles, but it
does perform well over a wide range of offsets.
As a second guess one might consider using equation (19) as an

estimate of H

- 2h
H = ot €O @ (32)
and then approximate cos o by [l - (Y/Z)?']l/2
1 1172
= 2h 1. [Y\2]
H= - Ll <2> j (33)

The group velocity curve of this approximate is also shown in Figure 4.
This approximation is valid over a wider range of dips than the previous

one.



1.0

33

- S
-] N
£8 H=1.4 £ 3 H=1,6
- -
Qe_| ae_|
g g
- -
1 97 #2 S #2
N & #1 NS i
Q Q
8 T T 1 T 1 = T T T T T T T 1 1
0.0 0.2 04 0.6 08 1.0 142 144 16 1.8 0.0 0.2 0d 0.6 08 1.0 142 14 1.6 L8
y - midpoint y - midpoint
9 2
0 @™
£ H=1.0 £37] H=1.2
ae_ Qe
e o
o o #2
-
1 S #2 | &
N & #o N #1
Q Q
g T T T T 1T T T 1 8 T 1 T T T I 1
0.0 0.2 04 0.6 0.8 1.0 1.2 L4 168 1.8 0,0 0.2 0.4 0.6 0.8 1.0 L2 14 1,8 (.8
y - midpoint y - midpoint
o o
] ]
Eo— H=0.6 Ec;_' H=0.8
= =
o, #2 o, | #H2
1 ° 1 ° pry
o o
N&- # N&
Q e
S T T T 1 1 S T T T T T T 1
0.0 0.2 0.4 0.8 0.8 1.0 1.2 L4 1.6 1.8 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 L8 1.8
y - midpoint y — midpoint
S S
o« o«
Eé— 0.2 Ec;— H=0.4
ae_ Q@
oo o
TJT_ o
1 ° #2 1 @ #2
N &- ¢/ N &— #1
o a
S T 1 T T T T 1 = T T T I 1T T 1
0.0 0.2 0.4 0.8 0.8 1.0 1.2 1.4 1.6 1.8 0.0 0.2 04 0,6 0.8 10 L2 14 1.6 1.8

Yy - midpoint

Figure 4.
continuation operator.

while #2 corresponds to equation (33).

y - midpoint

Group curves for two approximations of the exact downward

Approximation #1 is that of equation (31),

The unlabelled curve is the

exact elliptical group curve (equation ]6). Each frame is for a

particular value of H =

2h/vt.
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We believe there are other approximations along the same lines as
equations (31) and (33) which will increase the range of dip angles of
the constant offset migration. The next step in the analysis will be
to convert the Fourier domain approximations into time-space domain
migration scheme. For now however, they are only useful in f-k

migration methods.
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Appendix

To compute the group velocity curves of the migration operator

o o {w _ y

7 1z{:v o Y HM -k L+
P(y,h,z,t) =J; P(y,k ,0,u)e

Lo

}
¢
fdkydw (AD)

N |t

we use a stationary phase approximation. Differentiating the argument

of the exponential with respect to ky and w , we have

9 _ A

k. -0 Ty =0 (42)
y

o . N v b

Y 0 > 9 Y &' + " 0 (A3)

The derivative of & dis

Ly +ma +un il -ma-un
9Y —~ ) 9 1/2 . , \éwl/Z
L (1) (58
V2 ) N2
' ]
where H = H(Y) and H' = Y H(Y)

Equations (A2) and (A3) may be solved to form parametric equations for

y and z

(A5)

In order to compare these curves to the exact elliptical curves (equation
(16)) we have to consider the effect of the stacking. This may be done

by considering equation (A5) at Y =0
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- - vt (A6)
y =0 and z = =% [0.H(0)]

where

/ | 2!
¢ [0,H(O)] = 2*31 _EH(S)

4

%,

For the two approximations considered in this paper H(0) = 2 %%- , hence

If we now consider the exact relation at y = 0 we have

- 1/2
t /2hY
Ze T _4%— {l _{;E)

N
%1 (A7)

The stacking operation which brings equations (A6) and (A7) into agreement

is

(A8)

The curves in Figure 4 are plots of z' versus vy



