VARIABLE VELOCITY: WAVE EXTRAPOLATION AND REFLECTION
Bj8rn Engquist

Let us consider the scalar wave equation

2
Ptt = v(x,z) (PXX + Pzz); t,z > 0, (1)

where the velocity v depends on both x and z.

We will analyze two related problems. First, we assume Smooth
velocity and study the effect of velocity variation on approximations of (1),
that are used for extrapolating the solution in space. We will see how a
paraxial approximation of the wave equation can be modified for nonconstant v.

The main changes, locally, will be in the amplitude of the waves.

The second problem regards coupling of downgoing and upcoming waves
at a dipping interface. Both waves are assumed to be described by one-way
wave equations. This analysis can be applied to the study of multiples and

multiple suppression.

Let us now assume that (1) is given with a smooth v(x,z). We
will work with positive time and assume that P 1is given at z=0 and that

P and Pt vanish for t=0.

We start from the constant coefficient 15° paraxial approximation

of (1) describing downgoing waves:
2 < -— - t =
[, + /v) - (v/2)3__]P 0. (2)

The resulis can also be used for retarded time as in the migration equation.

. t . . .
Upper index, like 3, is here used to denote integration; lower index denotes

. t
3P = [ P at.
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We propose the modified equation

(8, + (3./v) - (v/2)3__+QlP = o0, (3)

where Q 1is an operator to be determined such that a solution P to (3) is as
close as possible a solution to (1) when v is variable. We mean here by
"close'" that the error shall be small when the derivatives of v and the

horizontal derivatives of P are small.

When (1) is written in the form

2
[Fattlv ) - BXX - azaz P =0 ] (4)

we can substitute azP using (3). Note that we cannot substitute the

operator Bz,
— t —
3 = —(Bt/v) + (V/Z)BXx Q, (5)

directly for both the BZ in (4) since 82 does not commute with v. The

substitution gives

{(8tt/v2) - BXX - az[— (at/v) + (v/z)aix -Ql} P = 0,

[( tt/v2) o, - (VZ/VZ)Bt + (W3, - (v /205~ (w03t 3

+ BZQ]P = 0.

Here we can substitute for BZP again, and after a few algebraic steps, we

get
/ Vz Vxx vx2 vx vz t vax tt va tt
[ - —iﬁt -+ > - — 93 ~-—=29 - ] - — 23
\ v 2v v v X 2 xx 4 = 2 xR
V2
ettt by g
ok ot Tt 450 r = 0 (6
4 v 2 xe zQ, - ) )
/

Let us set the level of ambition such that we neglect terms with more
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derivatives than two in the x-direction and more integrations than one in the
t-direction. If we transform each factor in each term separately, this
means that we drop terms of higher order than kX2 or 1/w (kx, kz’ and
-w are the dual of x, 2z, and t). We further restrict Q to be at most
first-order in x and to have the form

_ t t
Q = g9 +q, +4q509, (7)

where q; are functions of x and z. The equation (6) will then be

> Vxx Vx Vx Vz t qu 2q2 2q3 9V
-—9J - —+—"—~-—93_ -3 ~-—=03 -—=3 -—+
2 7t 2 X XX t X 2
v 2v v v v v v v v
v t t t t t
+ — [2q,0.. + 2
; [2q;9. (q), 9 + (q) 371 + (a9, + (95,3 + (q3),3
_ t ty t t t
qq(dq + g9+ q437) q4,(q;) 9 95979, = 943949 = O. (8)
We group the terms with the same differential operator together:
v 2q
Z
- T Bt = 0,
v v
v 2q
S xX__2 45 0,
X
v v
v v 2 2q
XX X 3 2 q2V
- + — + - X =
) (q7), - (a)" + 5 0.
2v v v v
These equations determine the q ¢
q; = - vz/2v ,
9, = -v./q,
2 X (9)
Vxx sz v v ?
q3 = - + - ZZ+ L
4 4v 4 8v
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With our choice of Q we cannot delete the factors in front of the other
differential operators. The effect of these non-zero terms is, however, of

higher order. If the derived value of Q is inserted into (3), we have

P, + (/WP - (WP - (v /20)P,_ - %VXPX

L= /%) _ ) - v 8+ (v P80 TR = o, (10)

The way in which higher-order terms are neglected can be chosen depending on
the size of the functions P and v and their derivatives in a particular

situation. In a simplified version of equation (10),

1 1 _
Ptz + (l/v)Ptt - (V/Z)PXX - E(VZ/V)Pt - §VXPX = 0,

we can identify the new terms. The amplitude of the transmitted wave is

controlled by (VZ/V)Pt in the z-direction and by VXPX in the x-direction.

Let us now turn to the problem of coupling downgoing and upcoming
waves at a dipping interface. We assume that the velocity has one constant
value (vl) above the interface and another (v2) below. The discussion

below is in many respects the same as that in Claerbout's book.

The incident downgoing wave is denoted D the transmitted wave DZ’ and

l’
the reflected wave U. The normal to the interface is (nx,nz) = )sinB, cosH).

We introduce new coordinates (n,s) where n is normal to the interface and

s 1s tangent:



The wave equation i

with the interface

With the following

D,

it

)

[

[
I

we can determine T

n = nx+nz,
X z

S = nx-ngz,
z X

X = nn+ns,
X z

Z = nn-n_S.
z

n the new coordinates is then

2
1 P = P + P
(1/v5) tt nn ss’
conditions
P,Pn continuous.

form of the waves,

exp[i(-wt + a,n + Bs)],

1
T expli(-wt + a,n + Bs) 1,

R exp{i(-wt - aqn + Bs) 1,

and R from the differential equation (12) and

interface conditions (13):

Let us relate the wave numbers o

i

originzl

1

a,n_ -
i 2

coordinate

a.n + Bn
x z

system:

i
o

Bn. = k_,
X

the
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(11)

(12)

(13)

1° %o and B with the wave numbers in the



al = nxkx + nzkz

= wln (e /0) + (a_fv))[1 - (vlzkxz/wz)]llz},
B = nzkx - nxkz

= wln G /o) = (/v L = (v, %k 2D 12y

These formulae lead to expressions of the reflection and transmission

coefficients R and T in terms of v 0 and kx/w. We prefer to

1> V2
describe the direction of the downgoing wave with kx and ® vrather than
with the angle ¢ . In this way it is easier to see what the reflection will

be for a general downgoing wave field:

o) - o, oy - [(w2/v22) gtz Ay
S N o
a; +a, oy w”/v,
where
. 2- 2,2
A = 51n9(kxlw) + (cose/vl)[l - (vl kX,/w )]1/2 ,
1 k sin® v 2k 2\1/272 ] 1/2
X 1 x :
B ={—% ~ [cosO— ~ -5 s
v 2 w v <; w2 .f
2 1

The reflection coefficient R can hence be written as a series in powers of

kx/w:

2, 2
R(vl,vz,e,kx/m) = ro(vl,vz,e) + rl(vl,vz,e)(kx/w) + rz(vl,vz,ﬁ)(kx Ju™) + ...
(15)
If we define a through v
a = [(Vl/v2)2 - sinze]l/z,

the first terms in the expansion (15) will be

r, = (cos® - a)/(cos® + a),



rg = 2Vl sinG (a - cosd) 115

a (a + cosH)
When we use ¢ to describe the direction of Dl’ we have
v,k /w = sinb
1x
sinB sinb cosf
A = —m + - (1 - sinzd))l/2
V1 1
= cos(¢ - 6)/V1,
1 cosBsinb sinb 2 1/2 211/2
B = ‘-——5 - - (1 - sin"¢)
) V1 V1
2 . 2
=LA, - sin’ o 0)/v, 212
That 1is,
R(vl,v2,6,51n6/vl) = rO(vl,v2,9—¢).

Let us now use formula (15) and go back to the physical domain. The number
kX/w is replaced by the operator —BE. This means that the upcoming wave
field U is given the following initial data at the interface:
3 t tt
U = (r rlBX + rzaxx + ...)D

0 1

Let the downgoing and upcoming waves be described by one-way wave equations:

(3/3z)D = L,D,

4+
(3/3z)u = LU
For the 15° approximation, we have
L= F WM+ (v/2)a, .
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The coupling can then be written

t
au/3z = L U+ sl(ro - rlax + ...)D,

where 61 is a delta-function along the interface. With the 15° approxima-

tion and two terms in the expansion, we have

v, - (1/v)Utt + (v/2)UXX

= GI(rODt - rle)'

If retarded time is used for both U and D, the equation becomes

v 2z 2z
Utz + 2 UXX = 61 [rODt(t-vl,x,z) - rle(t-Vl,x,z) .

Other approximations of the one-way wave equation or the use of other coordinate

frames do not change the structure of the result.



