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In this paper, difference aopproximations for forward model1ing
problems of interest in reflection seismology are discussed. After reviewing
the standard second-order accurate differencing schemes for the acoustic
wave equation and for the dispiacement equations of motion in two dimensions
for elastic waves, more accurate explicit fourth-order approximations are
given. The accuracy of the various approximations is compared by looking
at the theoretical phase error for each approximation. It is seen that
the-advantages afforded by the greater accuracy of the fourth-order schemes
can greatly outweigh the disadvantages of the slight increase in computational
expense for the methods. The possibility of adding dissipative terms (num-
erical viscosityl to the opproximations to attenuate the inaccurateiy model led
frequencies is also discussed. Finally, exampies are given in which the
second-order and fourth-order schemes with and without dissipation for the
acoustic case are compared for a simple model.

The Diff QL E :

The differential equations of interest for forward mode!ling in
reflection seismology are relatively simple to derive beginning with
the stress equations of motion (Newton’s second Ilaw) and using Hooke’s
law for on isotropic medium. Hooke’s iaow expressed in vector notation
is given bys

¢ = AV:Ul + ulVu + (YOI T (1)
and the stress equations of motion aret
otd%u/a1t®) = v 2)

Here, 7 is the stress tensor, u is the displacement vector, I = diag(1,1,1),
is the unit tensor, p is the density of the medium, and A and s are the Lame
parameters.

In on acoustic medium, the rigidity, pu, vanishes, so the stress
tensor is diagonal, and Tux - tgg =T,, T P where p is the hydro-

static pressure. Equation (1) becomest

-p = AV'u (3)
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and equation (2) becomess?
ota8%ur/8tyy = -vp . (4)

If U is eliminated between these two equctlons, the acoustic wave equation
results with pressure as the dependent voriables

3%/81%2 = Kv-(p''vp) , (5)

where K = A + 2u/3 is the |ncompr9391b|||rg of the medium. For the
special case of a homogeneous medium, this equation reduces tot

8%pra12 = &% , (6)
where c = (Kip]”a is the (constant) velocity of the medium. Of ren,
in an 1nhomogeneous medum, it is quite reasonable to ossume that p is
opprox:matelg constant, ond that the varigtion in velocity can be attributed

to variations in the incompressibility. In this case, the acoustic wave
equation can be expresseds

3%/81%2 = cBix,y,2)V%p . (6a)

In on elastic medium, equations (1) ond (2) moy be combined to
obtain the displacement equations of motions

0(d%/815 = VAVW + Ve ulVu + (VT 1) . (7)

When the motion is restricted to be in the x-z pione, and the displacements are
further restricted to depend only on x,z, ond t, equation (7) reduces to the
forms

pu,, = ax[ﬂ(x,zlaxU] + BZEB(x,zlaxU] + ax[Ctx,zlazU] +

az[E(x,zlazU] . (8)

Here, U = (u,w)’, where u and w are the horizontal and vertical dis-
pacements, respectively, ond the matrices A,B,C, and E ore given by
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. At2y O 0 n 0 A M 0

0 A A 0 A 0 0 A+2p .

Physicaliy, this corresponds to treotung P and SV-waves, but neglecting
SH-wave motion. For a homogeneous medium (i.e. when A,B,C, and E are
constant), equation (8) reduces tos

eu,, = nUxx + tB+Clsz + EUzz . (8q)

anPerence opproxlmotlons for equations (68), (8), and (8a) are
discussed in the next two sections.

11, Diff . . or £ .

The usual explicit approxlmotlon Por the acoustic wave equation in
two dimensions with constant density (6a) is given bys

TAtpgn - Ny2,mXmaX ZnZ
D01PT = (eQfiDX + DDDPT . (9)

This scheme is accurate to second order in At,Ax, ond Az. The necessory
conditions for the stability of the method are quite strolghtForword to
derive (Mitchell, p.206). First equatlon (9) is Fourier transformed with
respect to x, and z, assuming that ¢ is a constant to gets

~ ~
nlnlpj = -(4c/h sin®(nsa) + sina(q;/a]]PJ . (10)
(Here N = kxAx sy O = szz, ond Ax = Az = h.) For the method to
be stable with t as the evolution dlrectlon, it is necessary that the dis-

crete L_-norm of the solution at any time, t>0, be uniformiy bounded in
terms ®f the initial conditions, i.e., an estimate of the form

¥This differencing notovlon has been used throughout most of the recent
SEP reports. R review is given in the appendix to this paper. In addi-
tion, most of the difference operators are given schematically in the
appendi x.
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MR 1 < 11e®TRg L 1 (11)

O,k

is desired, where a« is a constant. By Parseval’s relationsghip, it is clear
that

FeY A
Pl < :e“'Po: {11a)

is an equivalent bound. If the solution to (10) is assumed to be of the
form

P = Pe'd® , (12)

J o
where & = wAt, then a bound of the form (11a) can only be obtained if
Im(e) = 0. Substituting (12) into (10), the following relationship resultss

sin®te/2) = (MImRALsin®tn/a) + sinfler2)l .
If Im(e) = 0, then the following inequality must holids

(c2at2/r® [sinf(n/2) + sinf(e/2)1 < 1,

which ==> (cat/h) < 272 (13)

When ¢ is variable, the stability requirement will be
(c_At/n) < 2V = (707 . (130)
»OX

A scheme which is accurate to fourth order in Ax and Az can be ob-
tained by modifying the approximations for the x and z derivatives. The
resulting difference equation is given by

taton _ N 2 aXpXcee _ (12 XX ZaZry _ (w2 ZrZq4pN
D_|_D_PJ’k = (¢, )(D,D_IL1 (h"/12)D0. D71 + D D”I[1 (h /12]D+D_]}PJ’R .

(14)

The stabitity limit is given by

tc At/h) < (/)2 = .g12 . (15)
=X
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This scheme haos a difference stor which uses nine points at the J th levei,
This is to be compored with the second-order scheme which uses f)ve points
at the j"th level. Both schemes use one grid point at the j-1’th and j+1’th
levels.,

The occuracy of the two methods can be compared b calculating the
phase error associoted with each approximation. If the differencing Iin the

t-direction is ignored, and the solution to the differentiol equation can
be written as

P(1) = Pl=0)e'®" ,

and the solution to the difference equation is written

p = P eimJAT
J 1]

then o - o is the phose error. The dispersion relationship for the
differential equation (with constant velocity) is

2 _ _2g.,@2 2
0 = c (k>< + k, ) . (18)
The dispersion relotionship for the difference equations will be slightiy

different from equation (1B), Ignoring time differencing, the second-order
scheme gives

~2
W

S = (4c®/r® [sint(n/2) + sinf(pr2)1 |, (16a)

ond the fourth-order scheme gives

Zf-‘ = (4c¥/R® (sin®M/2) 1 + (1/3)sinc(n/2)]

+  sinfle/2)I1 + (1/3)sin®(972)1> .  (16b)

The phase error for the second-order scheme is then

. 2 » 2
93 = el - [m—lﬂéa)a_.}m_(m}]"e >, (17a)
n/e2) + (9/2)

ond the phase error for the fourth-order scheme is given by
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-] - - 2 - 2
o, = wll - Ea1n_ELﬂiLLli1JzEuﬁJ£Li2L2l1_1_ﬁ1n_uucalllzJJxﬁnjULleéallﬂ!ﬁ5 (17b)

(/212 +  (gs2)8

Contour pilots of e_ and e, ¥s. horizontal wovenumber ? and

2
vertical wavenumber ¢ are given in figure 1. It is seen that o relative
phase error of 1% con be obtained if ” aond ¢ ore less that .164 for

the second-order scheme, but ” and ¢ need onliy be less than 381

for the fourth order scheme to obtain the some degree of accuracy.

In terms of points per wavelength, this means that the principal wavelengths
must be sompled at 76 points per wovelength for the second order scheme,

but oniy at B.2 points per wavelength for the fourth-order scheme to get
one-percent accuracyl

The resuit of undersampling will be dispersion of the higher
wovenumbers since a non-zero phase error implies that the effective phase
velocity is incorrect. It is possibie to attenuate this dispersion
by the addition of dissipotive terms to the differencing scheme. This
is discussed loter on in section IV,

111, Difs . C or E ic W

A second order accurate difference opproximation method for equation
(8) is given by Keliy et, al. (1976), ond is repected belows

Nttt N - X ahyoX N X X o X, N
PkD+D—UJ,k = (Duenk]DoUJ,k + nkD+D-UJ,k

¢ OF ERDIVT |+ EDIDA |+ oZBpDNU]
+ "BRDZOGUT, . + (ORCRIDZYT, \ + TERDZEORVT : (18)
In o homogeneous medium, this reduces to
pDiDIUg'k = nofnfug’k + (B + cmnénﬁug’k + EDfoUG,k . (18a)

A scheme occurate to fourth-order in Ax and Az con be gotten by repiacing

D,D_ by D,D_[1 - (h?/12)D,D_), repiacing Dzn; with
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DZD3[1 - (h?/6) (D;DX + D7DY)1, D, with
2 . 2
D [1 - (h%/8)D,D_}, ond D, with D _[1 - (h%24)D, D_ 3.

For the homogenecus case, the resulting differencing scheme iss
1-t.n XoXre _ (8 XXy
pIJ_,_I:l__UJ'k = AD,D”[1 (h./lalD‘,D_JUJ'k
Zo Xy o (B XX ZAZy a0
+ (B+C)DD 1 (h°/6) (D D_ + l:l,*lil__)ZlUJ’k
Zn2Z 2 ZnZ "
+  EDPpZn - ol o . (19)

In order to calculate the phase error for the elastic wove opprox-
imations, i1 is firet necessary to determine the dispersion relationships.
Again, consideration is limited to the constont-coefficient case, although
the conclusions drawn apply to the variaoble-coefficient case as well.

Fourier-transforming equation (8a) givess

tx+aun§ + pkaz - po® Ak kK,
MU = Uu = 0
2 2 2
[l+u)kxkz uh& + (ﬁ+8plk§ -pw N (20)
The dispersion reiations ore defined by det(M) = Ot
0¥ = [2p /el U + K2 ) (210)
ond o = el + K2, (21b)

or in terms of the compressional ond shear wove velocities, « ond §,

ws a(k: + kg ), (22a)

ond wa

2 e
p(kx + kz | BN {22b)

The dispersion relations for the approximation equations can also be
derived. For the second-order case,
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0%, = (1/h%) CLatp) (2sinf(n/2) + 2einly/2)]
+ (x-p) [4(esinf(N/2)-8inB(p/2))8 + sin™sinp) '™, (23)
ond for the fourth-order cose,

G"" = (1/h%) Cla+p) [28inC(0/2) (1+11/3)sinf(n/2))+28inf(9/2) (1+(1/3)sint(p/2))]
+ la-p){4lsin(n/2) (1+(1/3)8inf(N/2))-sin®(p/2) (1+(1/3)sinc(p/2))1°
+sinfsinfpll +(2/3)sin2(/2) + (273)sinc(e/2)1'> (24)

(The plus- sign gives the d|sperS|on relutnon for p-wavess the minus-sign
is for s-waves.) Using the definition g:ven above for the phase error,
two equations result for each gpproximationt one for compressional waves
and one for sheor waves. The phaose errors depend on ? ond ¢, and

aiso on the ratio of the p-waove to s-wave velocities, o/f. Figures

2 through S show the relative phase error contour plots £8p the second
and fourth order elastic wove opproximations for a/p = 37° and

o/p = 3. The plots indicate that, in general, the approximations are
better for shear-waves than for compressionail waves, and that they ore
better for a/f near unity than for o/p lorge. Again, from the
piots, it con be seen that for 1% error, the fourth-order schemes require
far fewer somple points per wavelength thon do the second-order schemes.

For the elastic equations with constant coefficents, the necessory
conditions for stability of the differencing schemes can be derived in
the saome way as was done above for the acoustic equotions. The results
ares
Le®+p®)81/n1 < 1 (25)

for the second order scheme, and
[e®+p% ' %a1/h] < 332 = .866 (26)

for the fourth order scheme. When going from the constant coefficient cose
to the varioble-coefficient cose, the resulting extra terms in the dif-
ferencnng schemes contain only first differences of U, and hence the
STﬂblllfg limits for the congstont coefficient equations apply to the
variable coefficient equations as well. (Custofsson, Kreiss and

Sundstrdm, 1972, theorem 4,3)
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IV. Dissiparive T

As mentioned eariier, dnss:potlve terms can be added to the leFerence
approximations to attenuate the higher wavenumbers which are cailculated in-
correctiy. In this section, the appropriate terms are derived.

In order to snmpllfg the discussion, consider the acoustic wave
equation in one space variables

P, = capzz . 127)

The golution looks Iike P = +'°k ! The idea behind dlSSIpOTIOﬂ

is to attenuate the hngh spatlal wavenumbers go that the solution is
modified to 100k something Iike

= : ?
P = axp(z;ckzt ekitl , (28a)
or possibiy
= : _ 4
P = exp(thkzt skit). (28b)
This con be accomplished by adding a term of the form 2eP__, or of
the form -2eP____, to the right-hand side of equation (27).

To show that the solution to the resultnng equatuon does, in fact, attenuate
in this manner, Fourier transform equation (27) in z, including the
first extra term suggested above. The result ist

(@, + aekze)atﬁ = -cﬁ«zaﬁ ) (29)

Assuming that the solutlon to this equation is of the form P = expliBt),
the following poiynomial equation for 8 resultss

gt -aiekaze - cekaz = 0,

The solution will be
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- LB LBy 4 2,2 172
0 -lekz + (—-g kz + ¢ kz)

e

. .2
lBkz + Okz .

It ie obvious that the solution will be equation (28a). The same procedure
may be followed with the second term suggested, giving (28b) as the solution.

Dissipative terms are formaily not added to the differential
equotuon itself, but to the difference approx:mot|on. Riso, they must be
added in such a way that they dlsappecr in the timite This is done to
assure that the equation being opproxlmuted is the real differential
equation, and not some other equatnon. For the second-order scheme for
the acoustic equation (9), this means that the dissipative terms must

be O(h%Pzz + hﬁ°xx] or higher, ond for the fourth-order

scheme (14), they should be at 1east O(h'P, . + hﬂpzzzz)‘
The appropriate dissipative terms to be added to equation (9)
will be

2 1 ZnZ X=Xy N
2ena101(D3DZ + DJDXIPT (30)

which are added to the right-hand side of the equation. For equation
(14), the appropriate terms are

-2en’atd! 0Z0%2 + (DXDN) A (31)

which are added to the rlght—hand side aiso. These additional terms
operate only on the j’th and j-1’th ieveis, so the resultnng scheme is
stlll expllclt. The choice for e will depend on how much d|93|pat|on
is desired, and can be determined by practical experimentation.

One dlsodvontoge of the fourth-order dissipative terms (31)
is that the resultang algorithm will requnre o large number of grid
points at the j-1’th level as well as the j'th level of calculation.
In actual proct:ce, the second-order terme (30) con be used with the
fourth-order dnfferen0|ng scheme with reasonabie results. (This could
probabily be justified theoretically if one chose € so that

2 4
leh (P, + P01 < 16h (Posex * Pzzzz]l



100

for some reasonable choice of 8.)

Y. Examples

Ve illustrate the 2™ and 4™ order difference schemes dis-
cussed in this paper with the scolaor wave equation. For both schemes
we also show the effect of adding dissipative terms 1o the approximations.
Elostic wave equation exampies will be the subject of a future report.

The examples were all run on a 128 X 128 grid with a grid spacing
of S0 m. Free surface boundary conditions were aoppiied along the top
edge of the grid, and simpie first order absorbing boundary conditions
(Clayton and Engquist, SEP-11) were used on the other three sides. The
velocity mode! and one of the initial conditions are shown in the upper
part of Figure 6. The initial conditions were taken as the for-field
approximation of a 2-D point source, sampied at two successive times.
The source waveform is the derivative of a Gaussiaon function. The
examples were all run with a time interval of 0.005 seconds.

The two paneis at the bottom of Figure 6 are time slices of the
wavefield at 100 and 200 time steps. These are shown to aid in the
interpretation of the wavefieids in the next few figures.

In Figure 7, the solution of the wavefield at 300 time steps
by four difference schemes is shown. The two top panels show that
by increasing the order of the difference approximation a significant
improvement in grid dispersion is achieved. This is particuiariy
noticeable on the free surface reflection (the major white event
in the center of the wavefieid). A comparison of the two 2™ order
solutions shows that a similar improvement con be achieved by dissipating
the higher wovenumbers. The penalty for this _improvement is that the
source waveform ig slightly broadened. The 4'™ order scheme shows onty
giight improvement! with dissipation. Dissipotiog in these examples
is measured by the percentage ratio of e/(vAt/h)<,

In the next two figures the surface seismograms for the four
approximations are shown. It is evident that both increasing the
order of the differencing scheme and adding dissipative terms decreases
the grid dispersion.
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YI. Appendix

A. Summary of Difference Notation

DIP = P,y - P )/bx
oZP, = (P, - Pl_y)/Ax
DaPk = (Pryy = Ph_y)/2x
szznk = Praie ™ Bioy ) /8%
D3Pk = BlA, .- A)/Ax
oX A = 2R, - A _ . )/Bx
Pg,k = P(kAx,nAz, jAt1)
A = Alkx,nAz)
xﬁ: = m:ﬂ/a * n;:-uz’/a
A = (AR, + AR/

B. Schematics

(for these operators it is assumed that Ax=Az=h)

2, nXnX ZnZy, - e 2
1. h7(DLDZ + DIDT) = h e, + 8,, + 0(h%]



2. n¥ojoXn -

th?/12)D3D%

+ D1 -

- 2 4
= h [Bxx * azz + 0(h))]

-1/12  4/3
K Z
3, rﬁDoD°
1/4
0
-1/4

-1712
4/3
-5
4/3

-1712

4/3

-1712

ha[axaz + 0(h®]

~-174
0
174

XmZ KX ZnZ
4. pDYD201 - (1/6) (D}DX + DFD?)]

- 2 4
= h [axaz + 0(h"))]

-1/24
~-1/24 5712 0
0 0
1/24 -5/12 0

1/24

X

5. hDO = h[ax +
-1/2 0

1/24
-5s71e
0
5712
-1/24

0(h3)]

172

1724

-1/24

th®/12)030%1>

103
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X 2 XX 4
8. hDo[l - (h/S)D+D_] = hI:B>< + 0]

1712 -2/3 0 2/3 -1/12

— AN' THAT'S THE

T DON'T BELIEVEA
WORD VER SAY.' g

SEVERAL
WORDS ARE
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Vi= 2.5 Km/s

V2= 5.0 Km/s

VELOCITY MODEL INITIAL CONDITIONS

100 TIME STEPS 200 TIME STEPS
4th ORDER, 3% DISSIPATION

Figure 6
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eénd ORDER, NO DISSIPATION ~4th ORDER, NO DISSIPATION

énd ORDER, ,3% DISSIPATION 4th ORDER, ,3% DISSIPATION
300th TIME STEP

Figure 7
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4th ORDER, NO DISSIPATION

end ORDER, NO DISSIPATION

Figure 8
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4th ORDER, .32 DISSIPATION

2nd ORDER, ,3% DISSIPATION

Figure 9




