VELOCITY ESTIMATION FROM A SINGLE REFLECTOR

William Gray

With a given velocity model of the subsurface, rays can be traced
from points on the surface, reflected or refracted off layers below, and
traced back to the surface. The travel time along each raypath can be com~
puted yielding a set of arrival time curves representing most of the features

of the velocity model.

The inverse problem, that of determining a model given the exact time
curves, can be solved uniquely if restrictions on the model are assumed.
Each year methods are presented which solve for increasingly more complicated

models.

A similar inversion problem is to determine the velocity distribution
above a series of reflectors given the arrival time curves from only those
reflectors. A solution to this problem has immediate application to statics
and velocity estimation as often the reflections in the earlier portions of
seismic gathers are completely obscured by noise or multiples. The only
information that can be derived from the data about these zones must be

obtained from reflections below the noisy zones.

In this paper, inversion theory is applied to a simplified problem of
this type in order to examine the properties of the solution. Observations
are computed from a horizontally layered model where the depth to the lowest
reflector is assumed known. The interval velocities of equally thick
layers above are the unknown parameters. The arrival time curve of the lowest
layer is inverted to produce an estimate of the interval velocities above,

their variances, and the resolution obtainable.

The observations are picked from a seismic gather on which linear

moveout corrections have been applied. The moveout correction,

T' = T - pX, (1)
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is a function of the ray parameter p and the offset X. The reflection

is nearly a hyperbola with its top at zero offset in the unshifted coordinate
system. In the shifted system, the hyperbola's top moves to some offset X
and two-way travel time T'. Claerbout, in SEP-11, shows that the hyperbola's
top in the shifted coordinate system is related to the root-mean-square

velocity vV at that offset by
— 1/2
v = (X/pT") / . (2)

As the seismic data are coarsely sampled in X, possible errors in

picking the hyperbola's top are introduced. These are accounted for by

2

estimating a variance Gx of the horizontal location. The error in time

is assumed insignificant. The variance of the RMS velocity is then

If

oxz(av/ax)

<

1/2

(042/2pT") (pT" /%) (3

A horizontally-layered earth model is assumed. Each layer has a
set thickness Z and unknown interval velocity v. The kth observation is

related to a model of m layers by

m

X, = 2] b, vz - p2e )
i=1
and
= -1/2
T, = 2izl(zi/vi)(1 - pk2v12) T+ Px - (5)

The partial derivative of the kth RMS velocity with respect to the

ith interval velocity can be found from equations (2), (4) and (5):

v P 1/2
_k = zi k. (1 - pk?_ViZ)'B/z
ov T
i ek
1/2 1
B @ - p 2v.2)7 /2] (6)
T T, v,2 k 1
Ptk ki
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Given an initial estimate of the model, the objective is to modify
that estimate to fit the observations. This is achieved by linearizing
the problem using a Taylor expansion and iterating using Newton-Raphson's
method in ©n dimensions until the L2 norms of successive solutions differ
by less than some specified constant.

Using the Taylor expansion, the system of equations relating the
observations to the model is

— _ = — 5

[V]observed [v]model + [8V/ov][dv] + O(Hdvll ). (7

If n dis the number of observations and m the number of layers of the

model,

[;jobserved is the nxl vector of RMS velocittes observed, computed
using equation (2);

[;jmodel is the nxl vector of RMS velocities computed using
equations (4), (5), and (2);

[a?]av] is an nxm matrix relating changes in the computed RMS
velocities to changes in the model parameters;

[dv] is the mxl vector of changes to be made to the model to
achieve a closer fit between the model and observed RMS
velocities; and

o(||av||?) represents the higher-order terms of the Taylor expansion.

The higher-order terms are assumed insignificant and dropped, yield-

ing a system of linear equations

A'x = b', (8)
where

AT is the nxm partial matrix, [A']k,i = 3;£/Bvi;

X is the mxl wvector representing unknown changes to the
parameters of the model: [x]i 17 dvi, where dvi is the
change in the interval velociéy of the ith layer required
to fit the observations; and

b' is a nxl wvector representing the difference between the

observations and those computed from the model,

' - -
[b ]k,l = dopserved = [Viluode1®
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The differing variances of the observations are accounted for by

weighting A' and b'. Each row is divided by the standard deviation
of the corresponding observation O - The resulting system,
k
Ax = b, (9)

has variances of unity for all observations.

As the thickness of the layers is unknown, and to determine as much
about the velocity distribution as the data will permit, a model with more
layers than observations is assumed. This leads to an underdetermined
system of equations. Such a system has an infinite number of solutions of
which there is one that minimizes the changes made to the model. As the
problem is nonlinear, this is a very useful criterion, for the Newton-Raphson
iteration can become unstable and oscillate if successive solutions vary

greatly.

The unique solution is found using a generalized inverse which solves
equation (9) such that the norm of the error !|Ax-—b|! and the changes I|x”
are minimized. The generalized inverse is computed using singular value
decomposition discussed by Canales in SEP-10. The decomposition of the par-
tial matrix A is

A = U A \ s (10)
nxm NXm ~mMXm mxXm
where V 1is the set of eigenvectors spanning the model space, TV = I;
U is the set of eigenvectors spanning the observation space, UTU = T1;

and A 1is a diagonal matrix whose elements are the eigenvalues of A.

The least-squares solution to the underdetermined system (9) is
x = AT@ah) . (11)

Substituting equation (10) into (11), the solution is

x = watuTo. (12)

A resolution matrix VVT is also obtained. Its elements indicate
how uniquely the interval velocity in each layer is determined from the

observations.
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The variance of each interval velocity is related to the decomposi-

tion by

Q
N
It
o~18

vi oLk Oay/iy) s (13)

j=1

where Xj is an eigenvalue of A. A general paper by Jackson (1972) on

inversion theory gives derivations for most of these results.

The reciprocals of the eigenvalues determine the weighting given in
the solution to each observation and its variance. If the system is strongly
underdetermined, some eigenvalues have very large reciprocals. The variance
of the corresponding observation is magnified such that large errors in the
solution result. This problem is solved by dropping eigenvectors until the
variance of each interval velocity is below some threshold. Dropping the
very small eigenvalues reduces the resolution of the interval velocities

while keeping their variances reasonable.

Constraints on the solution are imposed by requiring interval
velocities to fall within a reasonable range. The upper limit is set or
computed from the observations. Each observation is taken for a different
value of p. Too high an interval velocity in the model above the reflector
would cause the critical angle to be exceeded, making the observation with

the highest p impossible. The maximum interval velocity is then

Voo = 1/Pmax' (14)

A lower limit is set to the smallest velocity expected.

Because the problem is nonlinear, the solutions given at different
iterations generally point in the correct direction, but the distance to move
often results in interval velocity estimates outside the acceptable range.
When this occurs, the solution can be scaled so the new solution is in the
indicated direction but not as far from the previous solution. The scaling

is done so that all interval velocities stay within the limits imposed.

Since the constraints are not used directly in the determination
of the correction vector, the inversion process often gets trapped at the
boundary of one of the constraints. This reflects an incompatibility
between one of the constraints and the assumption of a minimum length correc-

tion vector. The problem is overcome by adding another degree of freedom to
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the solution (adding another eigenvalue). This usually points the solution

away from the bound but greatly increases its variance.

Another useful constraint is to require velocities for different
layers to stay in the same ordering as the initial estimate. Thus, if one
starts with an estimate having velocity increasing with depth, all solutions
would also have velocity increasing with depth. Linear programming algor-

ithms to accomplish this are possible.

A program was developed to implement the preceding method. It is

best summarized by detailing its inputs and outputs.

Inputs:
Initial model:
M  the number of layers of the model
Z the thicknesses of the layers
\ estimates of interval velocities
Observations:
N the number of observations
X  horizontal locations of hyperbola tops
T two-way travel times to tops
VARX variance of x's
P ray parameters
Constants:
VMIN minimum interval velocity acceptable
VARMAX maximum variance allowed
EPS threshold used to determine when to stop iterating

IMAX maximum number of iterations allowed

Outputs consist of plots showing various aspects of the process at
each iteration. Figure 1 describes the observations. The dashed lines
represent RMS velocities computed from the hyperbola tops at five different
offsets. The solid lines show the RMS velocities computed from the model
for those offsets. The model starts matching the observations fairly well

at about iteration 32.

Figure 2 displays the interval velocities computed at each iteration.
The dashed lines represent those used to compute the observations and indicate
the correct solution. They are labéled by their thicknesses. Each solid

line represents the estimated interval velocity of a hundred-foot depth
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interval. The vertical bars represent the standard deviation computed from

the variances of the observations.

The behavior of the process displayed is typical. The initial
estimate, iteration 0, increases until about iteration 16. Up to this
point, one eigenvalue has been used to determine some average interval vel-

ocity which best fits the observations.

The system is stuck on a solution at this point, so another eigen-
value is used. This enables determination of the velocity of a hundred-foot
layer, and of some average value of the rest. A third eigenvalue is used
at iteration 30, resulting in the velocity of another hundred-foot layer being

estimated correctly.
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FIGURE 3.—Variance of solution

Figure 3 displays the variance of each component of the solution.
It shows the variance increasing as eigenvalues are added but decreasing as

new solutions are approached.

Figure 4 shows the logarithms of the eigenvalues. The larger values
are related to the 12,000-ft/sec layer as the interval velocity is near
critical. For this case, a large change in the observations will cause only
a small change in the interval velocity. The other, smaller eigenvalues

indicate that small changes in observations cause large changes in the model.
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The wide range of eigenvalues is typical of a system that is poorly condi-

tioned, that changes to some observation can drastically affect the solution.

Figure 5 shows the number of eigenvalues or degrees of freedom
allowed at each iteration. As the system is ill-conditioned, the number of
degrees of freedom is restricted to avoid the variance blowing up which would

result in a meaningless solution.
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The resolution matrix for the final iteration is plotted to indicate

the uniqueness of different components of the solution in Figure 6. If y

o llillllll'llllllllllllIIIIJH‘IIIIIILII[]IIIIIIII

-

.
ISR ERE N

8

resolution

B,

4,

e

lllllll(lill(llllIlllJllllIll L1

. [
i

~Ce

AR R AR RS AR RSN RRR A RR RN R R RRRRE
100. 300. 500. 700, 800. 1100.

depth (f1)

FIGURE 6.—Resolution versus depth

is the set of all possible solutions, R the resolution matrix, and x the
estimate given by the process, then x = Ry. If R were the identity
matrix (which would plot as a set of triangles diagonally up the display),

the solution would be unique.

In Figure 6 the shallow high-velocity layers are perfectly resolved,
meaning all possible solutions contain a 200-ft, 12,000-ft/sec layer. The
velocities for other depths are not well resolved, meaning the solution given

is a linear combination of other possible solutions.

Several plots follow which describe the process for variations on
the inputs used for the case above. Usually inverting the time curve deter-
mines several features of the velocity distribution above with reasonable
accuracy. Given enough observations, the process can theoretically produce
the correct solution if the velocities are constrained to increase or decrease.

In some test cases this happened, but the resulting variances were very large.

Several different inversion methods were programmed, and results are
not well enough understood to be presented now. Briefly:
1. Overdetermined systems with small errors were inverted. Generally the
solutions oscillated and eventually went unstable.
2. The offsets and times of the arrival time curves were used as observa-

tions instead of RMS velocities.
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3. Depth and interval velocity were used as unknowns and the time curve
inverted. The solutions generally were far from that expected. Layers
might have negative depths, often only a few layers resulted, the

others having very small thicknesses.

Initially we had hoped to apply the inversion to processed gathers
shown in Figure 7. The data were obtained by Mobil 0il on the North Slope.
A high-velocity permafrost layer at the surface causes severe Snell's Law
effects on the moveout curves. - Conventional velocity estimation and stacking

smears the reflections as the moveout is not hyperbolic.

Picks were made on the event at 1 sec and a velocity distribution
estimated assuming the depth of the permafrost and unfrozen sediments were
known. The results could be used in a Snell's Law stacking program to

produce a better stacked section.

As the only stable method found so far requires the total depth to
the reflector, the method is not so useful. If a stable inversion method can
be found that yields both interval velocities and depths, it would have

immediate application.

Reference

D. D. Jackson (1972), "Interpretation of Inaccurate, Insufficient and
Inconsistent Data,'" Geophys. J. 28, pp. 97-109.
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FIGURE 10.—Another observation at 15,000 ft and large variances were input.
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