APPROXIMATION SCHEMES FOR 15-DEGREE EQUATIONS WITH VARIABLE VELOCITY

David Brown

In another paper in this report, Bjorn Engquist derived the
additional terms needed in order to take first-order amplitude effects
into account when doing migration for an inhomogeneous medium. (See also
my paper on one-way wave equations for variable velocity media). The
resulting migration equation in un-retarded variables is:
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where v is a function of both x and 2z. To use this for migration, it
is more convenient to transform to some kind of retarded time frame.

For the constant-velocity case, or even when the velocity depends on
depth, it is possible to find a transformation which will eliminate the
Ptt term in the differential equation altogether. This has the obvious
advantage that is allows the resulting differential equation to be approx-
imated with only two-time levels, rather than the three-time levels that
the double-t-derivative implies. When the velocity is a function of both
space variables, however, no transformation can be found which will
eliminate the Ptt—term without at the same time introducing a plethora
of annoying other terms. The next best compromise is to retard to some
constant velocity, Voo with the idea in mind of making the coefficient

of Pt as small as possible. The approximate transformation for

t
upcoming waves is:

X = X
\
z = z
t' = t+ z/v (2)
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which ~ 3t = Bt'
8 = 8'
X x
and 5 = 3 . +-E3, (3)
A z v0 t

Equation (1) becomes in this retarded-time frame:

Pzt - (%‘_ ;L)P - %>PXX * ;%'Pt * i;.PX “
It is now desired to find a stable differencing scheme for this equation,
Although implicit schemes can also be found, we will derive an explicit
scheme so as to be able to easily include 4th-order =x-differences. A
theorem by Gustafsson (1972) says that if we can find a stable scheme for
the differential equation without the extra first derivative terms

(~Pt and ~PX), that any scheme for adding those terms on afterwards will
also be stable, i.e., we need only find a stable differencing scheme for
the constant-velocity 15-degree equation with v # L then we can

add on the extra terms in some reasonable fashion without having to

prove stability. Equation (4) with constant velocity becomes:
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The following schemes are conditionally stable when solving for P?ji K
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and
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Equation (5b) is the same as equation (5a), except that the x-derivative
is 4th-order accurate in (5b) and only second order accurate in (5a).

Schematically, the difference stars look like:
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where S = AxD, "D * for (5a) and 6§ = MDD, ¥ ( 12D+ )
XX + b XX + -
for (5b). Here, a, = YAZAL and b = (}-— 1Az where v = l(vn+1 + v
0 2 v T vdht 2 Yk k
2Ax
DP, = (P, . -P)/Ax, DXP_ = (P, . - P _)/2Ax, and
+ ok k+l ~ Tk > 70 Tk K+l ~ Tk-17747%
DX X = L (p - 2P, + P, ).
+ - AXZ k+1 k k-1

In order to derive the stability conditions for these schemes,
we first Fourier-transform the difference equations (5a) and (5b) in
x and t letting all coefficients be constant for the moment. The
result is:

+1

[(1 +Db) + 2bz - (ba + b - l)zz] p" (z)

~

= [(4a +b - 1) - 2bz + (b +1)]P(7) (7)
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Here <2 e+1WAt (the plus sign is taken because we are extrapolating
k Ax
in the -t direction), a = aosin ( Xé ) for equation (5a) and
k Ax k Ax .
a = aosin ( x; y[1 + §sin2( Xé )] for (5b). Equation (7) can be

rewritten as:

2
Pn+l (2) = (b +1)Z" - 2bZ + (4ba +Db - 1) pl

Z
(ba +b - 1)2° = 2z + (b + 1) &
_ A(Z) _n '
. . 7"
B(Z) ~ (Z)
e A(Z)
For stability in Z, we need only show that E?zj- <1, and

and for stability in -t, B(Z) must be a minimum-phase polynomial.

By inspection,

) A(Z)l ) ’ 2’B(1/z) | l 8@/ | ' /b l_ )
B(2) B(z) |~ B()B(1/2) | ~ - b

so the first condition is satisfied. The second condition is a bit more

difficult to show.

Instead of showing that (B(Z) " has all its roots outside the

unit circle, we will show that A(Z) = ZZB(l/Z) has its roots inside

the unit circle. (This is fully equivalent). To find the roots, we write
AGZ) = b-Dz? - 22+ ba+b-1) = 0 (8)

The roots of A(Z) are given by:

= 1 - - 4a
= oy b+ V1 - 4ab - 4al,
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We must consider all possible cases:

Case 1: b < 0; 1 > 4ab - 4a.

In this case, the root with largest absolute value will be

1

7z = B:E-[B - Vﬁl - 4ab - 4a)l and is negative. We want

Z > -1, or equivalently,

5 b - \1 - 4ab - 4a] > -1
If b > -1, then this implies
-(4a + 4b) < b(4b + 4a)

~ b>-1 if a+b >0 (9

or b

| A

-1 if a+b <0 (10)

Since a > 0, both of these statements contradict the original assumptions.
If b < -1, the resulting conditions also contradict the assumption that

b < 0. Hence we must require that

1 1,AZ
- R S S L N > .
b ( O)At 0, and hence v v (11)

Case 2: b >0, 1 > 4a - 4b

= 1 .
Now Z = FETS [b + 1-4ab - 4a] is the largest root and is positive.

We get

Q 1 -4ab - 4a < 1 =Y b > -1,

which is trivially satisfied by the assumptions.



38
Case 3: 1 - 4ab - 4a < 0

Then Z 2 = = 1 ~ [b2 + 4a + 4ab - 1] < 1
(1+b)

=>b2+4a+4ab—1§b2+2b+1

1
=>ai§. (12)
For the second-order-in-Ax scheme, this means that
vAzAt k Ax vAzAt
5 sin2 (x) 5_%—, or 5 < 1. (13a)
2Ax 2 X
For the fourth order scheme,
vAzAt ) kXAx 12 kXAx 1
sin” ( ) [1 + = sin“( )] <5,
2 3 2
2Ax 2 2
or vlAzAt < 3, (13b)
2 T 4
Ax

Case 4: Double roots.

If both roots are the same, then, if they are both on the unit

circle, linear growth of the L2 - norm is possible. Double roots are

. . — = = b = -—
possible if b = (1 + 4a)/4a. Then, Zl = 22 = T1T71% 1 - 4a.
Clearly il - 4a{ <1 wunless a = 0, in which case linear growth is

possible. For real data, this probably won't be a problem.

To summarize, equations (11) and (13) give the stability restrictions
on the method. Although we assumed that v was constant when doing stability
analysis, the stability requirements for the variable coefficient case are the

same except that we require that (11) and (13) be satisfied for all values of v.
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Before continuing further, it is worthwhile to mention one other
possible scheme which would seem more intuitive, but which introduces

impractical stability conditions: If in equation (6), the averaging star

1
is replaced with 1 1
1
, vAzAt 1 1.Az
the stability requirements become v_<v and — (= - — At
o — ) 2 v vo t
X

Obviously, if v is variable, this can be a severe requirement as v

approaches Vo and since the accuracy of the differential equation

. 1 1
deteriorates as (;—— ;-) becomes large, this will quite likely happen.
o

Bjorn Engquist discusses a similar problem in SEP-8 in his article on slant-
frame approximations. We can now add on the lower order derivatives. Recall

the differential equation:

-E- Ly 4V —EP —-Y—}EP = 0 4
zt vV tt 2 "xx 2v 't 2 "x (4
The difference approximations will look like
1] -1 1 1 1 -1 §~1
P-b|-2 -2 }{P+ a, § P-c P -d} 1 1 SXP =
(14)
+1
VE - VE AzAt x, nt+l X
Here ¢ = IS Az, and dGX = 8Ax2 [AXD0 (Vk )][AXDO ]
vk + vk

for the second-order scheme. A scheme accurate to fourth-order in Ax can be
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* with b (1 - & p ¥p ¥

0 0 6 Dy Due to the theorem

obtained by replacing D

mentioned above, the resulting second and fourth-order schemes will have the

stability requirements given by equations (11) and (13).

The scheme given in equation (14) was tested for random initial

ay» b, ¢ and d constant. The behavior of the discrete L2 - norm

was observed as a function of n (number of =z-steps). For ¢ = d = 0, the

data, for

L2 ~ norm remained approximately constant, when a and b were restricted
according to (11) and (13) which is consistent with the stability analysis
discussed earlier. For ¢ and d, not zero, the L2 - norm was found to
exhibit bounded exponential growth or decay. It is relatively simple to show
that this behavior is consistent with the differential equation (4): Fourier-
transforming this equation with respect to x and t, assuming for the moment

that the coefficients are constant,

.2
~ 1w 1kx Vz VkX vX
P, = vt - gt P
W kx2 Va Vx
= [1(;'+ —arﬁ + (Eg'- sind E;)] P, (15)

where ¢ is the dip angle. The solution to this 0.D.E. is
2

/~ 2 X _Z . X
P(kx,z,w) = P(kX,Z = 0,w) el(v + w )z e(2v Sln¢2v)z

\% v

s

whence

bl

Pl 20| < [P,z = 0,0 [®F lel)

v
where o = o and B = 'x/2v. By Parseval's relation, this implies

“P(x,z,t)” 12 < e(a +l5t)z P(x,z = 0,t) .

2’

which indicates that bounded exponential growth or decay is possible.



