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Chapter 3. The Wave Equation Approach to Multiples Modelling and

Suppression

This chapter will be devoted to the implementation of the
scalar wave equation as a descriptor of seismic wave fields. We
will start by considering coordinate transformations that yield
approximate equations for propagating up and downgoing waves in
free space. Following this, we will couple up and downgoing waves
to obtain equations valid for solving the forward or inverse problems.
Finally, the theory will be illustrated with some synthetic examples.

The equations which we will deduce and solve in this chapter

are
' — v 31 PR RNST 1 | A z'
Uz't' = - 5sec GUX,X, -cx'z )Dt,(x -2tand z',z',t -2cosej;0 (3-1a)
and
p" = !-sec36 p" (3-1b)
Z"t" 2 X"X"

where c(x',z') 1is the reflection coefficient, v the compressional
velocity, 6 the propagation angle and the subscripts denote partial
derivatives. These equations represent the essence of the wave
modelling and data processing schemes of this thesis and are thought

to yield the most accurate deterministic multiple reflection suppression
method of reflection seismic data processing. Nevertheless, it was
still necessary to make many approximations. The derivation of

(3-1a,b) will elucidate the accuracy of the approach. After completing

it we will show how these equations are solved.
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The inclusion of the wave equation in our scheme comes as a
natural extension of our previous ray theory approximation. In
effect, if we delete the term containing the second derivative in x ,
which is responsible for the diffraction of the acoustic energy, we

are left within the framework of a ray approximation
U;'t' = - D:. (3~2a)

D'Z'"t" = 0 (3-2b)

The first equation for U then can be integrated by t'
Representing the remaining derivative in 2z' through the
difference U1 - U2 (omitting for simplicity the x', t' wvariables
and assuming Dz' = 1 ), equation (3-2a) becomes U2 = Ul + ¢y Dl s
which is equation (2-5a) of Chapter 2. On the other hand, equation
(3-2b) implies D" = constant, which corresponds to equation (2-5b).
It is the possibility of including new properties such as diffractions
and geometrical spreading which represents a major advantage over the
simplified model of Chapter 2. However, important elements such as
shear waves and absorption are still neglected.

We differentiate between two kinds of equations: the uncoupled
and the coupled equations. The former refers to the equation that
controls the propagation of each separate wave field ( U or D )
through a homogeneous region with no reflection or transmission

effects. The latter describes the propagation through inhomogeneous

media, where reflection coefficients couple up and downgoing waves.
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Actually we have already obtained these two types of equations in
Chapter 2, where (2-5b) was an uncoupled equation for D-waves and
(2-5a) a coupled equation for U-waves. From their definition, as
well as from the experience of Chapter 2, it follows that the struc-
ture of the coupled equations will be highly dependent on the model
that we choose for the propagating medium.

3.1. Uncoupled Equations and Coordinate Transformations

There are two main objectives which we wish to accomplish through
the coordinate transformation. First we want a transformation that
yields separate equations for downgoing and upcoming waves. Second,
we want a transformation which takes care of all spatial and temporal
translations of the wave field, leaving the wave equation to do only
diffraction.

It is not difficult to show that both objectives can be

accomplished through the transformation

x' = x + z tan @ (3-3a)
z' = 2z (3-3b)
e = + X svin 0 + 4 (iros & Ft (3-3c)

where the sign '-"

corresponds to downgoing waves, the "+" to
upcoming waves and 0 is the propagation angle (from the vertical)

for a plane wave. If we refer only to downgoing waves and, as before,

denote partial derivatives through subscripts so that
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U = 3 Uu = U (3-4)

x; st = 1, -tan 9, O (3-5a)

z; z.t = 0,1, 0 (3-5b)
H b

; 2t = - sin6/v, -cos8 /v , 1 (3-5¢)
3 ’

By using (3-5), we can now transform the 2-D scalar wave

equation

2 -
P T By ~ (V)P = 0, (3-6)

where P 1is the pressure, into the new coordinate system. Defining
Q as the transformed wave field and noting that the wave field is
invariant under coordinate transformations ( P(x,z,t) = Q(x',z',t') ),

equation (3-6) becomes

2
v sec” 8 Qx'x' +v Qz,z, - 2\rtan()Qx,z, - 2cos 9 Qz't' =0 (3-7)

The intermediate steps leading to (3-7) can be found in
Appendix 1. 1In order to achieve the separation into U and D
waves, we would like the obtained equation to be first order in z°
The standard procedure, known as paraxial or parabolic approximation,
is to drop the Qz'z' term. The dispersion relationship of the

remaining equation shows that its validity is then limited to an
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aperture angle of approximately + 15 degrees off the main direction

of propagation 6 . Besides, the same dispersion relation indicates
that the term proportional to Qx'z' is only significant for angles

of propagation larger than 40 degrees, which is, in any case, sort of an
upper limit for the other more general approximations involved in the
theory. Neglecting then both terms, equation (3-7) can be finally

written as

Qi = (W/2) sec’s q,_, (3-8a)

If we desire a better approximation to the wave equation than
(3-8a), we could estimate Qz'z' from (3-8a) (after integrating by
t' and differentiating by z' ) and substitute back into (3-7).
However, to keep the discussion simple, we will leave equation (3-8a)

-

as it is. It is interesting to notice that by choosing z' = z sec3 S

we get:

Qz't' = (v/2) QX'X' (3-8b)

where the leading coefficient of Qx'x' is no longer angle dependent.

3.2. Coupled Equations

The equations that we obtained in 3.1 referred to waves propagating
through a homogeneous region where up and downgoing waves are uncoupled.
However, in order to solve the forward or inverse problem we have to
consider the fact that the U and D wave fields will couple through
the reflection coefficients of the medium.

For the case of stratified media, Claerbout [5] showed that the

coupled equations for U and D waves can be written as
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(o]
I

- (iw/v) cos ¢ U - (IZ / 21) (U+D) (3-9a)

(]
I

(iw/v) cos ¢D - (Iz /2I) (U+D) (3-9b)

In equations (3-9) U and D have been Fourier transformed in
x and t , ¢ 1is interpreted as the deviation angle from the normal

direction of propagation 6 , and I is the impedance defined as

I = p v/cos¢ (3-10)

with p Dbeing the density. The use of equations (3-9) in our case

is not totally justifiable since they are obtained by requiring that
the medium characteristics be z-dependent only, whereas our theory
allows for small lateral variations of the reflection coefficients.
Nevertheless we will assume that they represent a reasonable approxi-
mation in the case of slowly varying media. This assumption will be
reinforced at the end by the fact that, in the limiting case of a ray
approximation, the coupled equations to be deduced from (3-9) give
equations identical to those obtained in the previous chapter. The
idea is then, to estimate ¢ as well as the Fourier transforms of

U and D in relation to the frame of the waves of interest (U

or D) . These estimations are substituted in (3-~9) and the obtained
equation is Fourier transformed back into the original frame. We will
start by making the same assumptions 0f Chapter 2 in relation to the
propagating medium, that is, we will ignore transmission losses
(eliminates U from the second term in (3-9a)) and intrabed multiples
(eliminates the second term completely in (3-9b)). Thus, as before,

the only coupling that remains is in the upcoming wave equation
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Uz = - (iw/v) cos¢U - (Iz /2I) D (3-11)

We illustrate the above procedure with the transformation (3-5)

for upcoming waves

x' = x+ z tan?® (3-12a)

z' = z (3-12b)
+ _ xsinb® z cos §

t = v + - + t (3-12¢)

By requiring as before, that the wave fields be invariant
(P(x,2z,t) = U'(x',2z"',t")) and by using the Jacobian corresponding
to (3-12), the first derivatives of U can be expressed in the new

frame as

Ux = U;, - Ué, (sinb) /v (3-13a)
— ] 1 1 -

Uz = Ux' tang + Uz, + Ut' (cosB) /v (3-13b)

Ut = é, (3-13c)

In order to estimate the Fourier transform of UZ and the wave-
number-frequency relationships in both frames (observer and upcoming),

we introduce in (3-13) a monochromatic solution of the type
exp (ikx - iwt) (3-14)

We then obtain
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ik U = (ik' + iw' (sind)/v ) U' (3-15a)
UZ = U;. + (ik' tan 8- iw' (cos®) /v ) U' (3-15b)
-iw U = -ip' U' (3-15¢c)

The cosine of ¢ in terms of the wavenumber k appears

as:

Vorr t s 1/2
cos¢ = [1 - (%352 ]l/2 - [1- (k V+$'31n9 )2] (3-16)

Expanding (3-16) to the second order about k'v/w' , we obtain

1 ]
cos ¢ = cose—-k,v tan 6 - (k,v)2 L (3-17)
w w
2cos O
Its inverse to first order is
— — 1 3
cos 1¢ & cos le {1 +-Ei%£ - sin b ] (3-18)
cos ©
Inserting (3-13b) and (3-17) into (3-11) we obtain:
2 I
R A P SRR S 1 _
Uz' 2 sec™ 8 o U > T D (3-19)

If now we differentiate (3-10) and substitute (3-18) into the expression

for 1 and Iz , we get:

I (pv) '
z Z k _
T = ) +-57 secH tanf v, (3-20)
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The first term of this relation is associated with the reflection
coefficient for vertical propagation, while the second term accounts
for its angular dependence. Finally, to obtain the upcoming wave
equation in time domain, we insert (3-20) into (3-19) and inverse
Fourier transform

3 l (pv)z'

' = _ v '
Uz't' 5 sec eUx'x'

D""

- - l n -
2 v Dt 2 vz,sec6 tansé Dx" (3-21)

This equation is the coupled version of (3-8). The absence of the
Ux'z' term indicates that thé approximations that were made when
computing cos ¢ and its inverse, left us within the scope of the
approximation discussed in section 3.1. For practical purposes we
would like equation (3-21) to be expressed in a single coordinate
frame. That implies expressing D" in terms of the upcoming
coordinates x', z', t' . 1In order to do that we need the transforma-

tion between up and downgoing waves, which is:

x" = x' -2 2" tano (3-22a)
z" = z! (3-22b)
t" = t' - 2 z'"(cosB) /v (3-22¢)

Then equation (3-21) can be finally written as:

3 (pv)z'

vy, = - Y sec”s ', ., - l-~-—-————-D",(x'—22'tane,z',t'—Zz'cose/v) -
z't 2 x'x 2 (pv) t

- %—vz,secetanelﬁb (x'-2z'tan6, z', t'-2z'cosb/v) . (3-23)
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To solve the forward or inverse problem we can complement the
transformation (3-12) and the coupled equation (3-23) with the

corresponding uncoupled equation for downgoing waves:

11 3 " -
Dz" (v/2) sec” 8 Dx"x" . (3-24)

t"

Equations (3-23) and (3-24) are the equivalents of equations (2-7) in
Chapter 2.

3.3. Computer Algorithms

The pair of equations (3-23) and (3-24) obtained in the last
section suffice to solve the forward and inverse problem within the
scope of the approximations involved. We will simplify the discussion
further by assuming that the reflection coefficient is independent
of angle. Neglecting then the last term in equation (3-23) and expres-
sing the vertical reflection coefficient (pv)z/2(pv) as c(x,z) ,

equations (3-23) and (3-24) become

U;'t' = - %-sec3e U‘x'x' - c(x'z')DE.(x‘—Ztanﬁ z',z',t"'-2cos8z"/v) (3-25)
and
D" = Y seco D" (3-26)
2" 2 sec """

In order to use these equations as practical operators capable
of extrapolating wave fields, either we have to find integral solutions
for U and D or we have to approximate them through finite elements
or finite differences. We shall take the last alternative. The first
step in this direction is to discretize the coordinates and wave

variables as we did in Chapter 2
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X = jbDx; z = kDzj; t = nDt
and
U(x,z,t) = U(jDt, k Dz, nDt) ——> UE 3
b

(3-27)

(3-28)

Since in equation (3-25) we have to express the downgoing wave in

terms of upcoming coordinates we will need, in addition, the discrete

version of the transformation (3-22) between U and D waves

i" = 3' - 2(Dz/Dx) tan 9 k'
k" = k'

"o v _ Dz 1
n n 2 v Dt cos 8k

(3-29a)

(3-29b)

(3-29c)

If we now define the sampling intervals Dx , Dz and Dt such that

2 tan ® (Dz/Dx) = f
and
. Dz
2 cos ev D - e

where f and e are integers, the transformation (3-29) reduces

to

j" = j' - f k'
k." = k.'
n" = n' - e k'

(3-30a)

(3-30b)

(3-31a)

(3-31b)

(3-31c)
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The next step is to introduce the unit delay operator Z =

exp(-iwDt) and the unit shift operator in the z direction

W = exp(—ikzDz), such that
n _ n-1 n - n _
Z Dk,j = Dk,j and W Dk,j Dk—l,j (3-32)

With these definitions we can obtain by following the Crank-Nicholson

scheme discrete centered approximations of the derivatives in 2z and

t
- Zp = 2 1W.m
D, = 520 = 7 17w Pk, (3-33a)
t T el T Dbt 1z Pk, j (3-33b)

For the second derivative in x we can use

n n n
e T B W i S o1

(0x) 2 (Dx) 2

(3-34)

A better approximation results if, instead, we discretize the second

derivative as

1 § X
D = X D (3-35)
XX

2
(Dx) 1-b SXX

where b 1is a constant which when made equal to 1/12 gives fourth
order accuracy in x . This may be important when working with real
seismograms, where the data tends to be undersampled in x . Otherwise,

b can be used to simplify the difference equations.
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Substituting these difference approximations into equations (3-25)

we will have

S '

(1-Z) (1-W) _n' - _ XX n _1 1-Z _a"
(1+2) (1) Yk',5" e Uer,3' T2 Skryr T3z D,y (3730
where
= X~QE—%; sec3 ) (3-37)
8 (Dx)

With the help of (3-31) we can express D in the upcoming coordinates.

If in addition we define a source term according to

Dn'—ek'
,j' k' 9j'-fk'

(w}
I

(1/2) Cpr (3-38)

and drop the primes, equation (3-36) becomes

n
K, J

n

(l—Z)(l—W)(l—béxX)U K, 3

- n - - — -—
= a(l+Z)(l+W)Uk,j (1-z) (1+w) (1 bGXx)S (3-39)

Upon substituting (3~33), this equation can be rewritten as

n-1 _
k+1,3

n n

[1+@b)s, 10U, ; = [1-(ath)s ](Uk+l’j-FUE:§ )-[1+(a-b)s 17U

n n-1 Sn--l ]

T Sk,5 7Sk, " 5k, 3

- (a-bs_) [ (3-40)

n
S, 5

Making a = b (by properly choosing Dz or by dropping fourth order

accuracy in x ), equation (3-40) finally simplifies into an explicit

equation

n-1
k+1,j

B+t Ly

n
Uir, 5 T 9%, 3

U . =[1—2a6XX](

K, j (1-asd

n
) G, 3+

+ Sn _ Sn—l Sn—l )

i3 S,g T Bk, (-4
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Another way to represent the delay operators in equation (3-36),

is by rewriting it as follows

W) (1 no_ 0 (1+Z) (1+W) n o _ _ n _
(1-w) (1 chXX)Uk’j a 17 6xxUk,j (1+W) (1 béxx)sk,j (3-42)
Now we can expand (l—Z)_l in a power series
a2t = 1+z+22 4234 (3-43)

Substituting back into (3-42) and letting as before a = b , we finish

with an integrated form of equation (3-36)

n-1 + Un—l )

n
2asd by (Uk,j K+, j

U n -
X’ "k+l,] XX g

n = —
ki o (1 ZaGX )u

n n
- (l—a&xx) (Sk,j-+sk+l,j) (3-44)

Similarly, the corresponding difference approximations for the

uncoupled equation (3-26) are

n _ n-1 . n _ nn-1 _
Dk,j = (l-ZaGXX) (Dk’j-i-Dk__l’j ) Dk—l,j (3-45)
and
n n o n—-i n-i
Dk,j =(1l~-2a Gxx) Dk—l, . —2a cSXX ii]_ (Dk,j +Dk—l,j ) (3-46)

A detailed discussion about the stability of these and other related

equations can be found in [9]. T will just mention the two most
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important constraints. First, the constant a has to be less or

equal 4 (a < 4). Secondly, the only valid unknowns with time

. n+1 n+1 . . .
running forward are Uk,j and Dk+1,j , while with time running
backwards - Un . and Dn . » This last constraint is related to

k+1,]j k,J

causality and has been discussed previously by Claerbout [5] and Riley
[17].

Provided we guarantee stability, any of the equations presented
here (3-41, 44, 45 and 46) can be used as a continuation equation to
extrapolate up and downgoing waves from the surface back into the earth
and vice~versa. I did not try to solve the inverse problem in the
diffraction case, but the 2-D forward and 1-D inverse cases, indicate
that the technique is closely related to that of Chapter 2. To imple-
ment the computer algorithm we have to supplement these equations
with the corresponding initial and boundary conditions which, in

principle, are identical to those of Chapter 2

Uo,j = RJ (3-47a)
n n n

D.. = B, -R, 3-47b
0,3 h| N ( )
n = —

Uk,j = 0 for n <k (3-47¢)

where, as before, R 1is the recorded surface seismogram and B is

the source waveform. In addition, due to the presence of the diffraction
term, we will need side boundary conditions. Here we have several
choices: 1) we can assume that U and D vanish at the side boundaries,
2) we can assume a zero slope of the wave fields or, 3) if we want to

avoid reflections off the sides, we can try the more sophisticated
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absorbing boundary conditions discussed in [7]. For the computation of
the synthetic examples shown in the next section, a zero slope condi-
tion was used. The remaining algorithm was close to that discussed

by Riley with the exception that in the slanted case we have to
consider an extra shift in x when comparing the U and D grids
during the computation. Higher order algorithms are discussed in [10].

3.4. Synthetic Examples

Figure 3.la shows the same model used in Chapter 2, that is, a
dipping, undulating sea bottom, overlying a faulted reflector. The
sequence illustrates only the forward problem. The vertical as well
as the slanted seismograms are included. Although the computer
algorithm used in this case was different from that of Chapter 2,
the 1-D vertical and slanted seismograms (Figures 3.1b and 3.1lc)
are replicas of those obtained with the Noah algorithm. The only
difference is in relation to the angle of propagation, which in this

case allows for a better splitting of the peg-legs ( PL through

11
PL23 ). The peg-legs at the right appear to separate due to lateral
variations of the sea floor, while the peg-legs on the left clearly

show distinct arrival times. The multiple reflections also show
differences in arrival times when the vertical and the slant seismograms
are compared. This is especially noticeable in the region where the
second order multiple (MZ) intersects the faulted reflector (PZ) .

The oscillations of the multiples in the slant case are smaller in

amplitude compared to those of the vertical seismogram.
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In the 2-D vertical seismogram (Figure 3.1d) we can observe the
diffraction hyperbolas, which are usually symmetrical, in the regions
where the acoustic energy focuses. Reflections are present as well, at
the side boundaries due to the zero slope boundary condition that was
used. Also a relatively large amount of numerical dispersion can be
noted, indicating the need for better difference approximations.
Comparison with the 2-D slant seismogram shows the loss of symmetry
in the diffraction hyperbolas, which tend to be skewed and higher in
amplitude toward the side from which they are being illuminated. The
separation of the peg-legs is not as clear as in the 1-D case due to
the masking by the diffractions.

Figure 3.2 is a repeat of the previous sequence but for a model
that mimics a bright spot. Again, the complex separation of the peg-
legs in the slanted case is clearly observed. The intersection of the
second order multiple (MZ) with the top of the spot, also indicates
differences in arrival times in both cases (vertical and slanted). 1In
the 2-D seismograms (3.2d and 3.2e), the diffractions have the same

asymmetrical pattern of the previous example.
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