HOW TO TRANSPOSE A BIG MATRIX

Jon F. Claerbout

It is a lucky thing that we can easily transpose very large matrices.
This is what makes wave-equation seismic data processing reasonable on a mini-
computer. The transpose algorithm is simple but tricky. I shall begin, there-
fore, by describing a card trick. I have in my hands a deck of cards from which
I have removed the nines, tens, and face cards. Let a, b, ¢, and d denote
hearts, spades, clubs, and diamonds. Also, I have arranged these cards in the

order (let ace be denoted by a one):

la 1b 1lc 1d 2a 2b 2¢c 2d 3a . e 8d

Now I deal the cards face up alternately, one onto pile A and one into pile B.

You see
Pile A: la 1¢ 2a 2c¢ 3a 3¢ ... 8a 8c
Pile B: 1b 1d 2b 24 3b 3d ... 8b 8d

Next I place pile A on top of (in front of) pile B, and again deal the cards

out alternately into pile A' and pile B'. You see

Pile A': la 2a 3a ... 8 1b 2b ... 8b
Pile B': ilc 2¢ 3¢ ... 8 1d 24 ... 84d

Now I place pile A' on top of B'. We started with all the aces together, the
twos together, etc. Now we have all the hearts together, the spades together,
etc. So you see that in just two deals of the cards, I have transposed the deck.
We never spread the cards out all over the table because we have never had ran-
domly to access the deck. We just made sequential passes over it. In principle,
this algorithm tramsposes a matrix requiring four magnetic tapes but almost no

core memory.

Now let us try the inverse transpose. You see that it takes me ¢three

deals of the cards rather than the two deals it took for the original transpose.
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This is because the deck has 2? = 4 suits and 23 = 8 numbers. Actually, there
is another algorithm which will allow me to do the inverse transpose in only two
passes rather than three. You just do everything backwards. Start with piles
A' and B'. Then create pile A by alternately selecting cards one from pile A'
and one from pile B'. Likewise construct pile B. Then do it one more time.

This algorithm is the "merge" algorithm.

: . . n_.m
So we see that the matrix transpose of a matrix of size 2 x 2 can be

done by the lesser of n or m passes over the data.

A variety of generalizations are possible. With 3 card piles we could
work out techniques for matrices of dimension 3", This would decrease the
number of passes but increase the required number of tape drives. Likewise it
turns out that arbitrary order may be factored into primes, etc. But this takes

us too far afield.

If you wish to minimize the number of passes over the data, you turn out
to maximize the number of tapes. 1In reality you probably won't be using real
tapes when you are transposing. But you are likely to be simulating tape oper-
ations on a large disk memory. Then the number of "tapes" you choose to use
will be controlled by the ratio of the speed of random transfers compared to the

speed of sequential transfers.



AUTOREGRESSIVE MODELLING AND SPECTRAL ESTIMATION FOR SPATIAL DATA:
SOME SIMULATION EXPERIMENTS

Dag Tjdstheim

1. TINTRODUCTION

Geophysical quantities often have a spatio-temporal character in the
sense that they are observed both in space and in time. Examples of geophys-
ical spatio-temporal variables are seismological array data, magnetic data,
and gravity data. While a number of efficient statistical techniques exist
for analysis of data recorded in time, this is not so for spatial data. 1In
this paper we will be concerned with a new type of analysis for spatial
variables. The proposed technique might be viewed as a generalization of
the time-series autoregressive analysis, but there is also some justification
for considering it a spatial extension of Burg's [4], [5] maximum-entropy
spectral analysis (this extension problem was the original motivation for

the paper).

Burg's maximum-entropy method is known to be superior to the more con-
ventional Fast-Fourier~Transform spectral estimation method in certain
situations. While the FFT technique is easily extendable from time to space,
however, it turns out to be much harder to find a suitable extension of the
maximum-entropy technique. Several attempts have been made to find a spatial
maximum-entropy algorithm. Burg [6] has examined the problem thoroughly from
a theoretical point of view, demonstrating that the '"matural" spatial varia-
tional problem is extremely difficult to solve analytically. McDonough [11],
[1] has presented a technique which does not derive from a fundamental varia-
tional principle, but rather from a stepwise extension of the one-dimensional
method. Wernecke and D'Addario [18] study suboptimal solutions of the spatial
variational problem. Their approach has the advantage of producing relatively
simple numerical algorithms, which they apply on image reconstruction of

astrophysical data.
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For time series, it is well known [6] that the maximum-entropy variation-
al principle results in a spectrum of so-called autoregressive type. An alternative
approach, which will be pursued in this paper, therefore consists in trying to
start directly from autoregressive models in space and examine their properties.
This method is certainly not without difficulties, either, since the autoregres-
sive property is a time-series concept, and it is not obvious how to generalize
it to the spatial case. 1In fact, this problem has been studied quite extensively
in the statistical literature [7], [17], [19]. 1In this paper, we present omne
particular solution of the spatial autoregressive problem. We will justify our
approach in Sec. 2, where we will also have occasion to comment briefly on other
models proposed. In the subsequent sections, we test various models using

simulated data.

We stress at this point that the potential usefulness of autoregressive
modelling is not limited to spectral analysis, but rather we look upon it as a
convenient method for information compression and feature extraction of spatial
data. In this context we refer to the use of one-dimensional autoregressive
feature extraction as applied to waveform recognition in general [13] and to

seismic discrimination in particular [16].

We will assume in this paper that the data are given on a regular grid
in space. In practice this is often not the case, but methods have been proposed
for getting around this problem (see [8], [14] for discussion of possible tech-
niques and additional references). As far as estimation of spatial autoregressive
coefficients is concerned, it is sufficient that the spatial autocorrelation
function be given on a regular grid. This will become clear from Sec. 3 [see

especially Eq. (3.3)].

2. THEORETICAL BACKGROUND

A p~th order autoregressive AR(p) time series X(t) 1is defined by a

p-th order difference equation
X(t) - alX(t) - ee. - apX(t -p) = Z(t) , (2.1)

where Z(t) is a white-noise time series, i.e., E[Z(t) Z(s)] = Oézéts .

and where E[X(t) Z(s)] =0 for s > t. The letter E is used here to

denote the statistical expectation operator. If the coefficients a a
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n .
satisfy the circle condition that z aiz1 = 0 has its roots outside the

i=1
unit circle in the complex z-plane, the model is said to be stable. A stable
series can be written as

t
X(t) = )} h(t-s) z(s) , (2.2)
S==0

with the same series Z(s) as in (2.1). On the other hand, a time series
having the one-sided representation (2.2) can be approximated [2] by an auto-

regressive time series.

Let us use the notation S <x,y] for the vectors of integers
u = (ul,...,un) which are such that X < uk‘i Vi for k=1,...,n, but
u # x. Corresponding to (2.1) we will define an n-dimensional spatial

AR(pl,...,pn) autoregressive series F(Xl""’xn) by

F(x) - ) a(y) F(x-y) = Z(x) , (2.3)
y € <0;P]
where Z(x) is a spatial white-noise series such that E[Z(y) F(x)] = 0 for
y ¢ S (x), and where S (x) is the vectors u of integers with uk_i %

for k =1,...,n. Figure 1 illustrates the planar case. In the statistical

Xy (Xl‘Pl,Xz)
F L g
L

L

(x1,%9)

s o o 4
. o ®
* 8 e

¢ (X1’X2_p2)
*XZ

FIGURE 1.— S (x) is the quadrant defined
by the vertical and horizontal line through the
point x = (x1,X5).

S (%)

literature on spatial autoregressive series, usually the models proposed have
not been one-sided as in (2.3), arguing quite naturally that unlike the time-
series situation, there is no preferred direction in space. This leads to
difficulties, however, in the resulting statistical estimation procedures

[17], [19], which is also the case when using a two-sided time-series model.
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As will be demonstrated in Sec. 3, one-sided models of the form (2.3) seem to be
better suited to estimation. It should also be remarked here that in some
interesting recent works [9], [10] on two-dimensional system theory, the emphasis

on one-sided representations analogous to (2.3) is very strong.

In the time-series case two-sided models can be reduced to one-sided
models using simple transformations [19]. For multilateral spatial series an
equivalent unilateral representation can be shown to exist (but may be diffi-
cult to obtain in practice in a general situation) under weak conditions.

The problem of finding such conditions essentially reduces to the problem of

finding conditions for the existence of a one-sided representation

F(x) = ) h(x-y) Z(y) (2.4)
yesS (x)

analogous to (2.2). A spatial series having the form (2.4) can be approximated
by an autoregressive series of type (2.3). Assuming the existence of a rep-
resentation (2.4) is equivalent to assuming that the spectral denmsity f£(})
= f(eiA) of F(x) can be written as f(eix) = |1r\{(ei}\)|2 where ﬁ(eix) is the
boundary-value function of a function analytic in the n-polydisc. In the one-
dimensional case (n = 1), it is well known that a sufficient and necessary con-
dition for this to be true is

‘lT

[ teglee™1 an > = . (2.5)
- T

This does not continue to hold in the spatial case, where the question of find-
ing a necessary and sufficient condition apparently is open. However, [12,

Ch. 3] a sufficient condition is that f(eik) be positive, continuous and
bounded, which is stronger than (2.5), but still a very mild condition from a
practical point of view. This fact indicates that the class of spatial series

that can be approximated by one-sided autoregressive series is large.

3. ESTIMATING AUTOREGRESSIVE PARAMETERS

In this section we will describe some experiments with simulated spatial
autoregressive series. For the sake of simplicity we have restricted ourselves
to series in the plane. A white series Z(xl,xz) was generated using a random—

number generator, and an autoregressive series F(x was subsequently

12%9)
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obtained from Z(xl,xz) using the formula (2.3) with autoregressive coef-
ficients a(yl,yz) which were known to yield stability. We used the series
Z(xl,xz) as boundary values in the recursive equation (2.3) for F(Xl’XZ)'
The task is to estimate the coefficients a(yl,yz) from the given values

F(xl,xz).

Using the fact (see Sec. 2) that E[Z(y) F(x)] =0 for vy ¢ S (x),

we obtain from (2.3) a Yule-Walker type equation

v SEO,P] R(u-y) a(y) = R(u), for wue S{0,p], (3.1)

where R 1is the autocorrelation function for F given by R(x,y) =
R(x - y) = E[F(x) F(y)]. Suppose that we have observations of F(x) for

1< X, < Mi’ where Mi z_pi-Fl for i =1,...,n. Then we can construct the

following estimate ﬁ(u) of R(u):

. n -1
R(u) = [ I (M, - u.):} Y F(xtu) F(x) . (3.2)
i=t * Y] xes[l,M-u]

We can now obtain so-called Yule-Walker estimates of a(y) by solving

) R(u-y) a(y) = R(uw), for wue S¢0,p] . (3.3)
y € S€0,p]

For the numerical examples in this paper, this equation was solved
using direct matrix inversion. It should be noted, however, that fast algor-
ithms (extending the one-dimensional Levinson algorithm) have been obtained.
We refer again to [10]. 1In [15] it was shown that the estimates obtained
from (3.3) are consistent; that is, the estimates g(y) converge to their
true values a(y) as the number of observations increases. More precisely,

it was shown that a sufficient condition for the convergence of a(y) to
n

a(y) 1is that the product il Mi tends to infinity. This result should be
i=1

of some practical significance, since it means that precise estimates may be

obtained even if the number of observations is increasing in one direction

only. In particular, in the planar case a narrow data strip should suffice.
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One of the main purposes of the simulation experiments was to look for minimal
values of width and length of the data strip for which reasonable estimates

are still produced. We now present the simulation results for four different

models.

Theoretical Model 1: AR(1,1)

F(x 0.50 F(xl—l,xz) + 0.33 F(xl,xz—l)

1’X2)

- 0.17 F(xl—l,xz—l) + Z(Xl’XZ) . (3.4)

The corresponding estimated autoregressive coefficients for various
numbers of observations Ml and M2 in the Xy and xz—direction are given
in Table 1. It is seen that the narrow strip consisting of 5 observations in
the xl—direction and 100 observations in the xz—direction yields estimated
values very close to the theoretical ones. Furthermore, it is seen that even
with Ml = 5 and M2 = 10, we get reasonable results. Following [3, Ch. 8],
the degree of fit can be studied empirically in terms of the estimated residual
series
z(x

F(xy,%,) - a(1,0) F(x;-1,%,) - a(0,1) F(x,,%,~1)

1°%7) 2)

- a(1,1) F(x,-1,%,-1) . (3.5)

For a perfect fit, this series should be white. The normalized residual auto-

correlation function p,(x ,x.)/p (0,0) as estimated from
Z 71’72 Z

0 (%)) = L L Z(xptyxyty,) Z(3yY,) (3.6)
Y172

is shown for a few lags Xy and X, in Table 2 (with Ml =5, M2 = 100). A

reasonable estimate [3] of the standard error is (MlMZ)‘l/z. It is seen that
BZ is roughly within a range of two standard errors, indicating that the fit
is satisfactory. As could be expected, the fit deteriorates as M decreases

2
to 10.
Theoretical Model 2: AR(1,2)

F(xl,xz) 0.67 F(xl-l,xz) + 0.17 F(xl,xz—l) - 0.11 F(xl—l,xz—l)

+ 0.17 F(xl,x2—2) - 0.11 F(xl—l,x2-2) + Z(Xl’XZ) . (3.7)



TABLE 1.

Theoretical and estimated autoregressive coefficients

for the AR(1,1) model defined in Eq. (3.4).

(Ml’MZ) M= MlMZ a(1,0) a(0,1) a(l,1)
Theoretical model 0.50 0.33 -0.17
4 (25,25) 625 0.53 0.31 -0.17
(5,100) 500 0.51 0.34 -0.14
(10,25) 250 0.47 0.35 -0.21
Estimated model Y (10,10) 100 0.53 0.19  -0.19
| (5,10) 50 0.44 0.29 -0.20
L (5,5) 25 -0.08 -0.24 0.02
TABLE 2. AEstimated residual correla-
tion function pZ(xl’XZ) for the AR(1,1) model
of Table 1.
2
) xl 0 1 3
2
0 1.00 -0.01 0.00 0.09
1 -0.01 0.94 0.07 -0.03
2 0.00 0.07 0.99 -0.01
3 0.09 -0.03 -0.01 0.93
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It is seen from Table 3 that the estimated model with Ml = 20 and M2
= 20 gives the closest approximation to the theoretical coefficients. It is
interesting to note, however, that the narrow data strips (Ml’MZ) = (8,32),
(8,25), and (10,25) still appear to give reasonable approximations. This will
be confirmed by spectral estimates computed in Sec. 4. To give an impression
of the fit, we have estimated in Table 4 the residual process autocorrelation
function for the case M1 = 8 and M2 = 32. Here two standard errors are
given approximately by 2/V/8+32 = 0.125. As is seen from Table 4, the fit is

satisfactory. Similar results were obtained for the other types of data strips.
Theoretical Model 3: AR(3,2)

F(Xl’XZ) = 0.34 F(xl—l,xz) + 0.64 F(xl—Z,xz) - 0.28 F(x1-3,x2)

+ 0.22 F(x -1) - 0.07 F(xl—l,xz—l) - 0.18 F(xl—2,x2—l)

1°%2
+ 0.06 F(xl—3,x2—l) + 0.36 F(xl,xz—Z) - 0.12 F(xl—l,xz—Z)

- 0.23 F(xl—2,x2—2) + 0.10 F(xl—3,xz—2) + Z(x (3.8)

12%y)
The corresponding estimated coefficients for various data strips are
given in Table 5. Although the coefficients for (Ml’MZ) = (4,25) do not loock
too bad, we actually had instability in this case; that is, the residual
variance 8;2 was larger than the original variance 8F2’

fit for both (Ml’MZ) = (20,20) and (6,25). The autocorrelation function of the

We examined the

residual process indicated a considerably better fit in the case (Ml’MZ) =
(20,20).

Theoretical Model 4: AR(3,4)

F(xl,xz) = 0.34 F(xl—l,xz) + 0.64 F(xl—2,x - 0.28 F(x1—3,x2) + 0.64 F(xl,x -1)

2)
- 0.21 F(xl—l,xz—l) - 0.42 F(xl—2,x2—l) + 0.18 F(xl—3,x

2
2D

+ 0.44 F(xl,x2—2) - 0.15 F(xl—l,xz—Z) - 0.26 F(xl—Z,xz—Z)
+ 0.12 F(Xl—3,X2—2)- 0.19 F(xl,x2—3)%- 0.06 F(xl—l,x2—3)
+ 0.13 F(xl—2,x2—3)- 0.05 F(Xl—3,X2—3)- 0.06 F(xl,x2—4)
+ 0.02 F(Xl—l,x2—4)*- 0.04 F(xl—2,X2—4) - 0.02 F(x1—3,x2—4)

+ Z(Xl’XZ) . (3.9)
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TABLE 3. Theoretical and estimated autoregressive coefficients
for the AR(1,2) model defined in Eq. (3.7).

(Ml’MZ) a(1,0) a(0,1) a(l,1) a(0,2) a(1l,2)

Theoretical model 0.67 0.17 -0.11 0.17 -0.11
[ (20,20) 0.71 0.15 -0.02 0.20 -0.14

(8,32) 0.64 0.05 ~0.09 0.10 -0.04

Estimated model ! (16,16) 0.52 0.03 -0.02 0.15 -0.06
(10,25) 0.61 0.04 -0.11 0.12 -0.07

(8,25) 0.63 0.03 -0.07 0.09 -0.08

. (10,10) 0.65 -0.02 -0.04 0.23 -0.29

TABLE 4. Estimated residual autocorrelation function pZ(Xl’XZ)
for the AR(1,2) model of Table 3.

X 0 1 2 3 4 5
X, 1

0 1.00 0.06 -0.03 -0.04 0.03 0.05
1 0.06 0.94 0.03 -0.03 0.01 0.04
2 -0.03 0.03 1.01 0.06 -0.03 -0.07
3 -0.04 -0.03 0.06 0.95 0.01 -0.03
4 0.03 0.01 -0.03 0.01 1.00 0.07
5 0.05 0.04 -0.07 -0.03 0.07 0.94
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From Table 6 it is seen that both of the cases Ml= M2 = 25 and Ml=10’

M2 = 25 give estimated models close to the theoretical model (3.9), this not

being so for M, = 5, M2 = 25. As for the AR(3,2) model, we found that the whiten-

1
ing of the residual process was significantly better for Ml = M2 = 25 than for
Ml = 10, M2 = 25.

For this model, we also did some experiments trying to fit successively
higher-order AR models to the simulated data. This was done to examine the
speed of convergence of estimated coefficients to the corresponding theoretical
ones. We used a data strip with Ml = M2 = 25. The results are listed in Table 7.
It is seen that the lower-order model estimates are surprisingly close to the
corresponding theoretical coefficients of the (3,4) model. 1In particular, the

difference between the (3,3) and (3,4) estimated models seems to be negligible.

It is instructive in this context to look at the corresponding residual
variances. As is seen from Table 8, the AR(1,2) model has a larger residual
variance than the AR(2,1) model, indicating that the AR(2,1) model has the
better fit of the two. This was confirmed by examining the correlation struc-
ture of the residual process. The whitening of the AR(3,3) model turned out to
be excellent. This result, taken together with the fact that the residual
variance for the AR(3,3) model is approximately equal to that of the AR(3,4)
model shows that the series can for practical purposes be described by an AR(3,3)

model.

In a practical situation when working with real data, we do not know the
appropriate order for the approximating AR model, so a criterion is needed that
tells us where to stop our iterative approximation procedure. In the time
series case, several such criteria exist. One of the most effective is Akaike's

[2] FPE criterion which consists of taking the p that minimizes the function

. M + p) 822 (p)
FPE(p) = s (3.10)
M-p

where Gzz(p) is the estimated p-th order residual variance, and M is the

number of observations. The appropriate spatial generalization of (3.10) can

be shown to be n n
IM + I (p, +1) -1
i=1 * i=1 A2
o a o, (Pyse-rp) > (3.11)
ITM, -~ I (. +1)+1
i=1 © =1 *



TABLE 5. Theoretical and estimated autoregressive coefficients for the AR(3,2) model defined
in Eq. (3.8)

(M, M)

a(1,0)
a(2,0)
a(3,0)
a(0,1)
a(i,1)
a(2,1)
a(3,1)
a(0,2)
a(1,2)
a(2,2)
a(3,2)

ammmewwq@N ceieee.  0.34 0.64 -0.28 0.22 -0.07 -0.18 0.06 0.36 -0.12 -0.23 0.10
(20,20) 0.44 0.62 -0.31 0.19 0.0l -0.21 0.09 0.3 =-0.14 =-0.22 0.10

- (10.25)  0.29 0.44 -0.27 0.04 =0.23 0.02 0.02 0.25 -0.07 -0.16 0.07

m (6,25)  0.42 0.57 -0.31 0.21 -0.08 -0.13 0.09 0.24 -0.21 -0.05 0.12

9 (25,5)  0.13 0.57 -0.03 0.21 0.09 -0.22 -0.32 0.57 -0.13 -0.28 0.l4

m (4,25)  0.53 0.74 -0.23 0.18 0.19 -0.15 0.19 0.13 0.03 -0.07 0.13

m (10,10) 0.31 0.82 =-0.09 0.07 -0.40 0.04 0.11 0.43 -0.32 -0.34 0.46

TABLE 6. Theoretical and estimated autoregressive coefficients for the AR(3,4) model defined in Eq. (3,4).

, s 8 88 3 & 3 & & & & & & ®& @& ®& % 3 3 =%
) 4 & <2 e 4 & ¢ ¢ £ & ¢ e £ & < e < ¢ g
L] @ « < @ Ja\ (aw I.M /m (ﬂw Izﬂ « L] @ « © L < o
Theoretical | ||| 0.3¢ 0.64 -0.28 0.64 -0.21 -0.42 0.18 0.44 -0.15 -0.26 0.12 -0.19 0.06 0.13 -0.05 -0.06 0.02 0.04 =-0.02

model

(25,25) 0.32 0.68 -0.27 0.61 -0.20 -0.40 0.11 0.46 -0.14 -0.30 0.20 -0.19 0.06 0.11 -0.02 -0.05 0.05 0.07 -0.06
(10,25) 0.31 0.65 -0.30 0.49 -0.30 -0.30 0.21 0.43 -0.26 -~0.26 0.24 -0.13 0.01 0.04 0.0r -0,08 0.16 -0.04 0.00
(5,25) 0.19 0.78 -0.37 0.55 -0.12 -0.48 0.34 0.27 -0.21 -0.08 0.09 -~0.01 0.01 0.15 -0.02 -0.09 0.12 -0.17 0.10

Estimated
model
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but numerical experiments are needed to test the efficiency of this

criterion.

4. AUTOREGRESSIVE SPECTRAL ESTIMATION

For an autoregressive AR(p) time series as defined by (2.1), the

corresponding spectral density is given by

5 2
Z

£E() = (4.1)

- b
1 - alexp{—ik} - . - apexp{— ipk}l2

2 . .
where -m < A <7 and where Oz is the variance of the residual process

Z(t) of (2.1). Similarly for AR(pl,...,pn) spatial series of the form (2.3),

it is not difficult to show that the spectral density is given by

2
97
£(N) = 5 s (4.2)
it - 3 a(y) exp{-i[y,xr1}|
y € $40,p]
n
where -1 < Aj_i 7 for j=1,...,n and where [y,A] = I yjAj . An estimate
| 3=1 )
f(A) of the spectral density is obtained by substituting estimates a(y) and
32 for the autoregressive coefficients a(y) and the residual variance oz,
respectively. Hence,
~2
A o,
f(a) = — > - (4.3)
[1- ) a(y) exp{-ily,Al}|

y € 5€0,p]

Clearly f(-A) = f£(A) and f(—k) = f(k), so it suffices to do the estimation

in a half-space.

Using (4.2) and (4.3), we computed the theoretical and estimated spectral
density for the models 1, 2, and 3 of the preceding section for Ml = 10 and
M2 = 25. The results are displayed in Figs. 2-4, where for matters of compari-
son we have also given the conventional spectral density estimate obtained using
a two-dimensional FFT with subsequent smoothing. The AR estimates are seen to
be much closer to the true spectra than the FFT estimates. In fact, only for

model 3 does the Fourier spectrum vaguely resemble the true spectrum.
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The theoretical spectra all come close to being symmetric with respect to the
line Az = 0. This is owing to the fact that models 1, 2, and 3 are all essen-
tially factorizable; that is, Eq. (2.3) can be written, to a good degree of
approximation, as
EbUS e Ul F(x,,x,) = Z(x,,x,) , (4.4)
; 1 1 i j 2 1°72 1°72

where Ui’ i =1,2 are the backward shift operators in the X and x2—direc—
tion, respectively. We also did tests on non-symmetric models. Thus, for
the non-symmetric AR(1,l1) model with theoretical coefficients 0.50, 0.33, and
-0.33, we obtained estimates 0.47, 0.35, and -0.37 for (Ml’MZ) = (10,25).

As could be expected the resulting estimated spectrum closely resembles the
theoretical spectrum. Similar results were obtained for other AR(1,1) models
derived from model 1 by perturbation of the coefficients in Eq. (3.4).

Clearly, more extensive testing is needed to determine the behavior of estimated

coefficients and the associated spectrum in general.

As mentioned in the Introduction, autoregressive spectral estimation
for time series is intimately connected with maximum-entropy spectral estima-
tion. The spectrum of an arbitrary (possibly non-AR) time series X(t) may
be estimated by first fitting an AR model of sufficiently high order to the
data, and then using (4.7) as an approximation to the spectral density of X(t).
This procedure usually works well in practice and in some situations has a

resolution superior to that of the FFT estimate.

With this as our motivation, we did some simulation experiments on

models of the form

F(Xl’XZ) = Z(xl,xz) +nAcos(alxl4-a2x2) +}3cos(81x14-62x2) s (4.5)

where we have cosines embedded in a two-dimensional spatial white-noise series.
(These models do not exhibit symmetry with respect to AZ = 0, of course.)
Strictly speaking, such series are not covered by the autoregressive spectral
estimation scheme, since the associated spectral density has singularities

at (Al,Az) = (ial,iaz) and (Xl,Az) = (iBl,iBZ), and hence it does not
satisfy the boundedness and continuity requirement of Sec. 2.

The first experiment we did was with A2 * 0.75 Var[Z], B = 0, and

(o,,0,) = (1L.5,1.5). Again we used M, = 10 and M, = 25 observations in the
1272 1 2
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X = and x2—direction, respectively. The series F(Xl’XZ) was approximated suc-
cessively with (2,2), (2,3), and (3,3) AR models. The results are given in Fig., 5
where an FFT estimate is displayed as well. For all four cases the spectral peak
is at roughly the correct location in the Al-kz plane. The sharpness of the

peak increases substantially with the order of the approximating AR model. The
(3,3) model produces a significantly sharper peak than the FFT estimate (but

there are indications that a weak secondary peak may start building up for the

AR estimate). Unlike Figs. 2-4 the AR-estimated contours are all more or less
slanted in the same direction. We have not been able to explain exactly what

causes this behavior.

It is interesting also to examine the residual variance reduction. The
variance for F(xl,xz) was 1110, while for the AR(2,2), AR(2,3), and AR(3,3)
models, the residual variances were 1020, 960, and 930. The correlation struc-
ture of the residual process was not too close to that of a white-noise series,

off diagonal values as high as 0.2 not being uncommon.

At the next stage both A and B of (4.5) were allowed to be non-zero.
We kept (al,az) fixed at the same value as before and let (81,62) = (0.0,1.5).
Two values of A and B were considered: (1) A2 = B2 = 0.75 Var[Z] and (2) A2 =
B2 * 0.12 Var[z]. The corresponding estimated spectral densities are depicted
in Figs. 6 and 7. For both cases the spectral peaks are slightly off their
correct locations. For case (1) it is seen that the peaks are much sharper for
the AR estimate than for the FFT estimate. For case (2), the presence of peaks
in the FFT estimate is rather uncertain, while there still is a clear indication
of two peaks for the AR estimate. They are not, however, nearly as sharp as

in case (1).

Finally, we did a simulation experiment with A2 = B2 * (.27 Var{Z],
with.(Bl,Bz) = (0.5, 1.5) and (al,uz) as before. As is seen from Fig. 8, the AR
spectrum again gives the strongest indication of existence of the two peaks,
but unfortunately the autoregressive spectral peak corresponding to (81,82) =
(0.5,1.5) is shifted too much to the left in the Al—direction. For the FFT
estimate, both peaks are approximately at correct locations.

We also did some experiments with (Ml’MZ) = (5,25) and with very large
values for A and B. 1In these cases the autoregressive spectral estimates did
not perform very well, possibly owing to a combined effect of a narrow data

strip and a strong singularity.
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FIGURE 6.——Autoregressive AR(3,3) spectral approxima-
tion (a) and FFT approximation (b) of two high-intensity cosines
embedded in white noise.
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FIGURE 8.——Autoregressive AR(3,3) spectral approx-
imation (a) and FFT approximation (b) of two cosines
embedded in white noise.
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From our tests we tentatively conclude that as in the time-series

case, there should be situations for spatial variables where autoregressive

procedures are superior to FFT estimates. More tests are required to put

this conclusion on a firmer basis.
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