DISPERSION RELATIONS FOR ELASTIC WAVES

Robert Clayton and Jon Claerbout

In SEP-10, two paraxial approximations of the elastic wave equation
were introduced. The first of these (SEP-10, pp. 125-14Q), is order

|kx/w|3 and is cast in terms of horizontal and vertical displacement fields
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and o and B are the compressional and shear velocities, respectively. The
second paraxial approximation (SEP-10, pp. 165-170) is order [kx/mll+ but

uses a rather peculiar set of state variables.
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To obtain Eq. (2), we algebraically solved the equations given on pp. 169 and
170 of SEP-10 for the elements of the Ll/2 and C matrices. To make sense
of those equations it is necessary to correct two ''typos." In the expression
for a,; at the top of p. 169, the "A" should be a "y", and the "bl/z" should

be a "b" in the expression for 22 at the bottom of that page.
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In this paper, we compare the dispersion relations for the two approxi-
mations. The dispersion relations in this case indicate how well P and S waves
are modelled along a ray path in the positive z-direction. We have also included
in the comparison the dispersion relations of the absorbing boundary conditions
proposed by Lysmer and Kuhlemeyer [1969, "A finite dynamic model for infinite
media," J. Eng. Mech. Div. ASCE, EM4, pp. 859-877]. This boundary condition con-

sists of the viscous damping of shear and normal stress components
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These equations may be converted to a paraxial approximation by expressing the

stress in terms of displacements.
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The dispersion relations are found by first Fourier transforming the

equations in all components, and then converting to the form

The equations will have non-trivial solutions if and only if det L = 0, and
the values of kz/w and kx/w which make this true define the dispersion

relations.

After a little algebra, the following dispersion relations were found:

for Eq. (1):
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for Eq. (2):
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and for Eq. (3):
-2
[2-3(5+2)] e
- = 1, (6)
[;;__;HZ _(a-8)?
2\~ «a 4B (a” - 2B%)

where for convenience we have let 2Z = kz/w and X = kx/w.

Equation (5) defines a pair of parabolas each of which is equivalent to
the 15° scalar approximation for velocities o and B . The basic shape of

these curves is independent of the velocity ratio a/B.

Equation (6) is a hyperbola which, along with the dispersion relations
for Eq. (5), is shown in Fig. 1. It is obvious from this figure that there are

problems with modelling shear waves with Eq. (3).

The dispersion relations implied by Eq. (4) depend on the velocity
ratio a/B. For values of this ratio close to unity, the dispersion relations
resemble those of Eq. (5) (i.e., a pair of parabolas). However, for larger
values of a/B the dispersion relation for shear waves becomes a poorer approxima-—
tion to the semicircle. 1In Fig. 2 the dispersion relations are shown for
a/8 = V3, and in Fig. 3 for o/B = 3. For reference in Figs. 2 and 3, the

parabolas of Eq. (5) are also included.

The dispersion relations shown in Figs. 1 through 3 indicate that Eq. (1)
gives the best representation for P waves and Eq. (2) is best for S waves.
Since the shape of the dispersion curves for Eq. (2) is independent of the velo-

city ratio a/B, it gives the best uniform approximation for both P and S

waves.
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Figure 1.

Figure 2.
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Figure 3.




