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Preliminary Results on Refined Source Waveform Estimation
by Raul Estevez

1. Introduction

We present some preliminary tests of a technique to estimate
the source waveform and the deconvolved (whitened) Noah's seismogram,
based on the idea of minimizing the power of the colored Noah's
seismogram ("Refined Source Waveform Estimation", see page 50 ).
This approach to waveform estimation and multiple suppression should
offer several advantages over our previous one ("Shot Waveform
Estimation'", February 26).

For one thing we obtain as a direct result both the waveform
and the deconvolved Noah's seismogram (reflection coefficient
sequence). The previous method formulated the problem in terms of
the inverse shot waveform. Also, we hope that this technique will
eventually handle situations such as shallow water multiples which
could not be handled by our former method. Finally, it does not
seem to require confusing steps such as defining special gates,
weighting functions, shifts, etc., which will result in simpler
and more general algorithms.

The basic idea is to consider the colored Noah's seismogram
U' = U'(B,R') as a function of the waveform B and the surface

observed seismogram R'

. - BR'
U' = BU BRT (1)

where U 1is the whitened Noah's seismogram.
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A poor estimate of B will produce a U' not totally free
from surface multiples. Since these remaining multiples add power
to the seismogram, Claerbout expected that the minimization of
”U'H2 with respect to B , would yield improved U' and B .

As shown, the non-linear least square approach to the problem,
in the case of vertical propagation, leads to the minimization of the

length of
U' +dU0' = U' +(3U'/3B)dB = U' - U2 dB = 0 (2)

In terms of an overdetermined system of equations, relation (2)

looks as follows:
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Then a recursion could be organized according to the following

scheme:
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\ . .
dBi-'-—Ui, Ui , using relation (3)

B, .7 B; +dB, (4)
U U! =—3 R > using Noah's relation (1)

i+1° T+l i+l °

where i refers to the recursion number and not the vectors' components.
As one would expect, the choice of a "good" starting value is

critical. One possibility is to try B=0 or B=1, 0, 0, ... and

then define U and U' through (1). Also, we could try to start

with U = U' = R' and then use (1) to define B . As we shall see

later, the main thing here is a start which is not too far from the

final solutionm.

2. Some practical aspects of the computation

In all the synthetic examples I considered, I started with an
initial waveform B equal to the rescaled, tapered beginning of the
first primary (sea bottom). In order to get the proper scale
factor (maximum value of the tapering function), the amplitudes of
this primary and its respective multiples were compared. 1In the case
of real data, an additional time varying factor should be introduced
to account for geometrical spreading ( /t for plane wave stacks or
t for point source data). This initial choice is illustrated in

the following diagram:

saa\e Qac_JCoc

First Primary Tapering Function Initial Value for B

|

Figure 1.



58

The solution of the overdetermined system of equations (3)
was computed using the subroutine LEVITY, described in Claerbout's
paper, "Levity: Levinson Recursion Reprogrammed" (page 90 ). Since
most of the synthetic data were too sparse, the minimization of the
Lz—norm was chosen over the median minimization. With the latter,
the presence of too many zeros tends to produce zero medians.

Frequently, the denominator B+R' in the Noah's expression (1)
tends to be non-minimum phase, and consequently, the computation of
U, U' and U2 was done in the frequency domain. At this point I
shall mention a very important constraint that was added to the
recursion. We know that before the first reflector (sea bottom)
the seismograms (R', U', U) should be zero. So upon transformation
of U, U' and U2 back into the time domain, we forced the equiva-
lent number of zeros at the beginning of each one. Although we still
do not understand fully the significance of this constraint, it was
of extreme importance for convergence of the recursion. For example,
in the computation of U2 » @ more stable convergence resulted, after
forcing the zeros of U in the time domain (it would seem much
simpler to compute U2 at the same time we are computing U and
U' in the frequency domain). This behavior probably is related to
the familiar cyclic property of the discrete fourier transform when
the vectors are chopped too early. Thus, by zeroing the beginnings
we partially eliminate the noise introduced by this chopping. From
the physical point of view, this could be related to requiring

causality for some of the vectors.
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To avoid division by zero in expression (1), the spectrum of
B+R' was increased a small amount whenever it approached zero.

This was achieved using the following approximation:
~ 2 2
a/b = ab*/MAX0( b, eBIGGEST (b“) ) , (5)

where a and b are complex vectors, b* is the complex conjugate
of b and e is a small positive number. The expression in the
denominator reads: take the maximum number between the given value
of b2 and ¢ times the biggest value of vector b2. By making
e sufficiently small, we do not significantly distort the spectrum
of b .

The degree of convergence was decided by evaluating ”DBII/”BII s

. . , . . . -3
and in my case, recursions continued until this ratio was < 10 .

3. About the convergence of the recursions

Since it is a non-linear least square problem, we can't say
much about convergence. Moreover, the few steps that I took trying
to clarify this problem generated more questions and unexpected
results than real answers.

The problem is complex not only because of its non-linearity,
but also because of the additional constraint whose real significance
we still do not fully understand (zeroing of the beginnings of the
vectors, requiring B to have a relatively small length, etc.).

At least two general criteria can be given:

a) The kind of linearization used generates a Gauss-Newton type of
recursion, which for convergence usually requires initial values

reasonably close to the final solutions.



b) Convergence could be improved by replacing the expression

B.

i+1 = Bi + dIBi with Bi+

=B, + A dB,, where parameter A is
1 i i
chosen in such a way as to improve or correct the rate and direction

of convergence (i.e., steepest descent method).

But the really interesting fact that emerged from the synthetic
studies was that, although we are minimizing ||U'||2 , the constraints
force it to come to its proper final value no matter if we start
from a smaller or larger value of |IU'”2 s, provided that it lies

within a certain strip of convergence.

Let us assume that U' and B are the final
solutions of the recursion, then two values of U' , (Ui and Ué)
appear to exist, such that HUiH <|lvY]] < ”Ué” . Within this range,

any initial value of U' will converge to U' . The situation is

illustrated in Figure 2.
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Figure 2.

Up to this point, no general way to define the strip of convergence

has emerged.
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This strange behavior probably is telling us that the constraints
we are putting into the recursion play a more important role than
the minimization by itself. Moreover, it explains why the most

obvious and immediate solution B=0 and U'=0 , do not emerge as

a result of the recursion, since this case does not satisfy the
constraints. In effect, if we assume ||B]|<<||R']|, from (1)

we have:

p o= R . —E - 14 fmRY (6)
R'(l+§r

which tells us that U#0 at t=0 (we are requiring causality fcr

u ; that means U=0 for t <0 !)

The fact that HU'H is not converging toa minimum in the common sense,
makes even more difficult (but not impossible!) the proper choice
of a convergence factor A such as the one discussed above.

Therefore, it seems to me that considerably more work has to be
put in this direction before it becomes a practical reality. On the
other hand, the encouraging part of the story is that, as the following
synthetics show, the technique works in principle.

4. Synthetic examples

In order to have a better feeling about the technique, its
degree of resolution and its handling of relatively difficult situations,

the following models were tested:
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X X
20 C=.5
A0 C=
30 c=.3
38 c=.3
AT = .2
| 54 =4
[ a. Model 1 V Z b. Model 2
x X
20 C=.5 20 C=.5
25 C=.3
28 C= .b
40 c=.1
| = | z
¢c. Model 3 d. Model 4
1—¥
5 C=.5
- ;E! ;E! ; —
)
{ Z e. Model 5

f. Synthetic shot waveform

B= (-.5,.5,1.,.5,~.4,.3,-.2)

Figure 3.
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In all the cases the same shot waveform (Fig. 3-f.) was used
to produce the corresponding synthetic seismograms (Figs. 4 through
7) and the initial values for B, U and U' were chosen according
to 2. Since we are considering only vertical propagation, the
computation was done on a single trace, but for display purposes,
this trace was repeated several times in Figures 4-7, after being
convolved with 3 point binomial wavelet (1., 2., 1.) . All the
synthetic seismograms were taken 150 points long.

Model 1 is a "good" model, used mainly to test the technique
in nearly optimal conditions. It took 9 iterations to achieve

the desired degree of convergence (||DB]||/]|B|| < 1073

) . The results
are illustrated in Figure 4.

Model 2 was used to test the degree of resolution in relation
to the strength of the reflectors. As we see in Figure 5, the final
U (after 15 iterations) is reasonably good and only the last
reflector was lost. The estimated waveform is not as good as in the
previous case, however, this result could be greatly improved by
extending the corresponding synthetic seismogram beyond 150 points,
since the reflections have not died down at that time.

Model 3 was meant to test resolution in terms of separation
among reflectors. The first 2 reflectors are 5 points apart and
the last only 3 points apart (notice that the actual waveform is
7 points long). Figure 6 shows quite a good result both in terms

of B and U .
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Model 4 tries a difficult situation: a small primary coincides
with the first multiple. As Figure 7 shows, our technique cannot
handle this type of situation. The second reflector was washed
away in the final U and the estimated waveform is rather poor.

Model 5 tried another kind of difficulty, where we expected
that this technique would be less sensitive than our previous one:
shallow water. In this case the first multiple arrives before the
first primary has died completely. Despite our expectations, the

recursion flatly rejected the model: it diverged very quickly!
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e. Estimated U (reflection coefficient)

Figure 5.

Synthetic seismogram
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