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Migration with Short Computer Word Length

by Bjorn Engquist

The error in migration from round-off during the computation
is in general much smaller than other errors. The usual computer
word is unnecessarily long. For the use of minicomputers and in
general to reduce storage and I/0, one could try shorter words
when it is practically possible.

Here are the results from some experiments where a short mantissa
(fraction) in floating point arithmetic was used. The calculations
in the inner loop were performed in full accuracy (24 bit mantissa on
IBM 370/168). The values of the wave field were then truncated or
rounded before they were stored. This amounts to introducing rounding
errors for each new t and 2z 1level.

The tests show that a considerable reduction of the length of
the mantissa can be done without distorting the migration. In some
cases it can be as short as 5-7 bits.

We used the wave equation program SM8 (SEP-8, p. 118) which
is based on an implicit difference approximation of Ptz = %-Pxx .
The program was modified to include truncation and rounding, and we
had a symmetric pulse with maximum 1 located at the left boundary
as initial value. All computations were performed on IBM 370/168
with hexadecimal arithmetic. The mantissa of a single precision
floating number P was truncated or rounded by the fortran functions

TRUNC or ROUND, which are listed after the figures. With truncation



we mean chopping of the n least significant bits of the mantissa.

If P is rounded we do the same thing, but if the chopped off part

. n-1 n . . . .

is > 2 we add 2 to the mantissa if we regard it as an integer.

We also simulated binary truncation and rounding by the functions BINTR

and BINRO. The leading digit d in the hexadecimal mantissa has

1
the range 1 < dl < F , which means a waste of 1 to 4 bits when
compared to a standard binary representation. (The exponent can of
course be shorter in hexadecimal representation.) In the figure
captions TR stands for truncation and RO for rounding. Then
follows the number of bits in the mantissa and within parentheses
the base for the exponent. The number of steps in the 2z direction
are denoted by NZ .

We see in Figure 1 that 3 hexadecimal digits (12 bits) and
rounding are enough to give a plot which cannot be distinguished
from the one produced by full word length calculation (Figure 4d).
Truncation to 3 digits is also almost satisfactory but gives larger
errors than rounding and for this mainly positive wave form it
results in a lower magnitude.

The binary representation requires fewer bits in the mantissa.
This can be seen in Figure 2. The critical number of bits is here
around 7. In Figure 3 we study different numbers of 2z iterations.
We are on the border of indistinguishable results, but it is possible
to see that truncation to 9 bits does a better job than rounding to

7 bits for NZ = 25 . The situation is reversed when we iterate

100 steps in z . It is very difficult to strictly anmalyze the



statistical properties of truncation and rounding errors in the
migration process.

Let us for simplicity assume that the result of truncating P
is uniformly distributed in (P-¢, P) and the corresponding
result for rounding is in ( P-¢/2, P+¢/2 ) , and that the errors
from different iterations are just added. This would cause the error

to grow like O(NZ) when truncating and like O(NZl/2

) when
rounding. It is consistent with the result presented in Figure 3.
The stability of the difference equation guarantees that the error
does not grow exponentially with NZ .

In the Figures 4a and 4b we see that truncating to 4 hexidecimal
digits or to 11 binary ones is enough for NZ = 50 . The plot 4c
shows that rounding also in the inner loops of the calculations does
not distort the final result very much.

In these tests the full 7 bit hexadecimal exponent was used.

Such a large exponent range is of course not needed.
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