Chapter 4, Velocity Estimation for Diffracting Earth Models

We first turn our attention to the more general case of velocity
estimation in which the subsurface reflectors may now assume non-zero
dip and curvature. The subsurface reflector geometry will retain its
property of being two-dimensional, and the velocity will remain a
function of depth only (actually, we require only that it vary slowly
enough in the x-direction so that it remains essentially constant over
the distance between the near and far offsets).

An additional generalization to a medium with strong lateral
velocity variations will require migration of not only the upcoming
wave, but also of the downgoing wave. The generalized wave stack is
introduced which, along with wave equation migration of the upcoming
wave field, constitutes a complete migration procedure.

Dipping Layers in Slant Frames

As a preliminary to general diffracting earth models, we investi-
gate the effects of dipping layers on velocity estimation in slant frames.
Figure 4.1 shows a ray path diagram for the slant frame geometry

and a reflector with dip, ¢ . This figure should be compared to
Figure 2.8, which describes the geometry for a horizontal reflector.

We find, with the help of the figure, that

tl

= = cos (0+4) (4.1)
0

which reduces to equation (2.9a) for zero dip. The time parameter,

té , 1s still the zero-offset, two-way shot to geophone time, but is
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v = constant

Figure 4.1. The ray path and coordinate definitions for a reflector of

dip ¢ . Note that té is the zero-offset two-way travel time,

but is no longer the p=0 ray path., Compare with Figure 2.8, The

relation

£t
;l_
0

= cos(6+¢)

is apparent in the figure for a constant velocity medium. Figure

4.3 shows the resultant p-gather for ¢ =15 degrees.
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Figure 4.2, Diagram showing that the zero-offset travel time, té , is

a function of the horizontal coordinate x' when the reflector

is dipping. When we define a zero for the x' coordinate, we can

then define tO to be a property of the reflector. The relation

~ 1 .
SACHNE t0+-2——’i\7—*°'i9—"> (4.2)

can be written, making explicit the dependence of té on x'
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Figure 4.4. Continued on next page.
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The effect of a dipping layer on velocity estimates done in slant
frames using interpretation coordinates and only positive values of p . The

velocity profiles are from synthetic data with three events, all dipping at

the specified angle, The vertical line on each profile shows the "true'

velocity: 5700 ft/sec.
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no longer the p=0 travel time. Indeed, it is not even a property

of only the reflector depth and velocity, but is a function also of
the shot or geophone coordinate, x' . This functional dependence is
described in Figure 4.2, where we have defined EO to be the value

of té at x'=0 . For an agreed upon origin for the x' coordinate,
the quantity EO becomes a property of the reflector.

We combine equation (4.1) with equation (4.2) from Figure 4.2.

t' (p, x') = ( EO + Eji%EQEQ_) cos (6+4¢) (4.3)

where we have now made explicit the dependence of the arrival time,
t' on both p and x' .

Figure 4.3 shows a p-gather with t' (p, x'=const) for a dip
angle ¢ =15° , This is the gather which would result in a dipping
environment with no attempt made to transform to interpretation
coordinates . Equations (3.17) and the accompanying discussion in
Chapter 3 describe the method by which we incorporate interpretation
coordinates into velocity estimation.

Figure 4.4 shows the result of velocity estimation using interpretation
coordinates in a dipping environment. Only positive values of p were
used in the estimation simulating a one-sided spread. The results
show that for the larger angles of dip, interpretation coordinates
alone will not provide a sufficiently high order dip correction,
and migration before velocity estimation appears to be the desirable
alternative.

The Role of Migration

In this section we will show the effect of prior migration of
slant frame data on a subsequent velocity analysis. TFor a review of

migration. see for example, Peterson and Walter (1974). Migration will
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be defined here simply as a process by which seismic data is converted

to a reflectivity map.

Doherty (1975) has shown that when data is migrated prior to velocity

analysis, reflectors of arbitrary curvature can be correctly treated

in the manner of horizontal layers in the velocity estimation procedure.
One must be careful, however, to insure that one is in a coordinate system
whose gathers display a common subsurface reflection point in a flat
layered earth. Such coordinate systems are CMP coordinates in the

standard geometry and interpretation coordinates in the slant frames.

We shall describe the effect of migration first in the CMP geometry,
and then draw a parallel for slant frames. Since migration corrects
errors due to non-zero reflector dip, we investigate a reflector

which contains all dips: a point scatterer,

Figure 4.5 shows a point scatterer at depth =z, viewed with a single source and

0

receiver separated by offset, f . The arrival time, ¢t , for energy
reflected from the scatterer is found by geometry to be

t = %/h2+z 2 4 %/(f—h)2+z 2 (4.4)

0 0

This arrival time function will describe a pseudo-hyperbola when viewed
in a common offset section (y,t) . We used the parameter, h , in
Figure 4.5 to simplify expression (4.4) , but it can be converted to
the midpoint coordinate, y , provided that f is held constant, by

the simple transformation

h = Y~ Y,

with Vo @ constant.
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point scatterer

Figure 4.5. A ray path diagram for a point scatterer in CMP coordinates

used to obtain equation (4.4).

point scatterer N

Figure 4.6. Ray path diagram for a point scatterer in slant frames

used to obtain equation (4.7),
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Now migration can be viewed as a process which will collapse the

pseudo-hyperbolic arrival curve to the point at its apex. Let us locate

the apex of the curve implied by (4.4) . It must occur at such a value
of h that
ot _
(Eﬁ;)f = 0 (4.5)
or, when
f
h = 5 (4.6)

Notice that this configuration has the point scatterer reflecting as
if it were a horizontally flat reflector, and that the process of migra-—
tion forces this configuration to be the only one for which energy is
present. As we would expect from this result, and as was shown by
Doherty, velocity estimation done after migration using a theory for a
horizontally layered earth will give accurate results even in a region of
complex reflector topography.

Turning our attention to the arrival times for a point scatterer in
slant frames, we view Figure 4.6. The geometry of the figure indicates
that for a p-section (data in (x', t') coordinates for a constant p ),

the arrival times will be of the form,

2 %0

2
tanb )"+ zO + m———

t' = %/( x' -z -x'p (4.7)

0

The above is an asymmetric pseudo-hyperbolic curve with its apex at x'

such that

(7)) = 0 (4.8)

or, when
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x' = 2 z tan 0 (4.9)

As in the case of the standard geometry, (4.9) indicates that
the apex of the pseudo-hyperbolic curve occurs when the point scatterer
reflects as if it were a horizontally flat reflector. We conclude from
this result that migration as a pre-velocity analysis processor will have
the same result in slant frames that Doherty showed it to have in the
standard geometry: that a proper velocity estimation can then proceed
assuming all reflectors to be horizontally flat. We must, however,
choose CMP coordinates in the standard frame and interpretation
coordinates in the slant frame.

Wave Equation Migration Coefficients

We now describe the coefficients necessary for data in slant frames
to be migrated using the finite difference approach to the wave equation,
(See Claerbout 1970, 1971, Claerbout and Doherty 1972, and Doherty, 1975.)
The choice of wave equation migration for this discussion is not meant to
imply that data in slant frames cannot be migrated using other schemes.

Let us at this time generalize the true subsurface velocity to
be a function of both the vertical and horizontal coordinates. This
quantity will be denoted ;(x,z) . We also introduce a velocity v(z)

which will be a velocity estimate, one that we specify as a function

of depth. The velocity v , is to be used as an input velocity for the
migration. The equations which are developed in this section allow a
migration of slant frame data to be done in a medium with velocity a
function of both x and =z .

An upcoming plane wave, U(x, z, t) , in the earth with some

propagation angle 6 =arcsin(pv) can be described by
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U(x, z, t) = mo*a(t-xf“9+z?39) (4.10)

~ ~

where w(t) is the waveform and t rather than t 1is used as the
time coordinate since we have previously used t to be the shot-to-
geophone time.

Equation (4.10) suggests the following coordinate transformation

for anticipated use with the wave equation.

z

x' = x +-S tan 8 (z) dz (4.11a)
0

z' = z (4.11b)
z

e = E + S dz EosG(z) - x s—ine(z) (4.11c)
0 v(z) v(z)

or expressing the angles in terms of the ray parameter, p ,

z

x' = x+ pv (z) dz (4.12a)
SO (l—p2§2(2)1/2

Z = gz (4.12b)

_ 2.2, ..1/2
t' = t+ S (1-p ¥ (2)) dz - xp (4.12¢)

v(z)

where the primed variables represent the coordinates of choice for the

migration. The coordinates x and 2z are earth-based, and equation

(4.12a) describes the interpretation coordinate transformation. The

variable, x' , therefore, represents the same quantity which it did

in previous sections, the horizontal coordinate of the slant stacked data.
Likewise we notice that the coordinates E and t' have the usual

relationship at z=0 . The generalization to depth dependence implies

that we now prepare to downward continue the surface data to depth.



The transformation equations (4.12) define a new downgoing wave

field with the relation

U(x, z, t) = U'(x',2z',t")

to be the wave field,

We wish to describe the wave equation

U +U - -1y
XX z2z ~ tt
v(x,z)

(4.13)

(4.14)

in the primed coordinates, so we compute the proper derivatives.

U = \i - |
x Ul p Utv
U= U,
- 2.2.1/2
1-p"v")
U = U' ( v ) +U', +U! ¢ A-p¥7) '~ )
1 ' ' _
zZ (l_pZVZ)l/Z z t 5
and
U = U -2pU! +pl
xx x'x! p x't! P Ut't'
~ - '
Utt Ut't'
2 =2 2_2
= P v U' +Uv + (1'P v ) ]
Uzz (1_p252) x'x!' z'z' _2 t't!
- 2.2.1/2
2pv ' (1-p%7) ' '
+ (l_p2§2)l/2 Ux'z' + 2 - et +2p UX't'
+ [ _3 v ] N 3 (l—Pz‘—’z)l/z ] '
3z 2.2.1/2 + Ux! 3z - Upr
(1-p"¥7) v

Now substitution into the wave equation gives

83
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2 _2
' _ ' ' v '
U v 2py Tt +p Utltl + 2.2.1/2 UX'X'
(1-p™¥7)
1-p%% 2
+ va + e kA U'v v + PV [ ]
z .2 t't 2.2.1/2 “x'z
\Z (1-p"v7)
+ 2(1~ 2,2)1/2 v + o’ + [ 9 v 1 v
- Uyrer P Ugrpr dz 2.2.1/2 '
v (1-p7%7)
2.2.1/2
jL (l— ) Y - ;&_ t
w12 - Jo, = Lo, (4.15)
v v

We now drop the U;,z, as we make the Fresnel approximation and notice
that the U;'t' terms add to zero. In addition, we drop the U;'z'
term because it has been shown to be small in previous work (see, for
example, Doherty, 1975). This term may be retained however, if a

higher order approximation to the differential equation is desirable. '

Collecting all remaining terms gives

U;'tl = VEZ) (1- szz(z) )—3/2 U;'X'
y —) (- —2—) ',
21-p22@NM? T ) P,z EE
pV(2) 7 (2) PV @ V() T (2)
- 2 2 2 U;{y - [ 2 2 + _ ] U::l (4'16)
2(1-p"v (2)) 2(1-p v (2)) 2v(z)

The first term on the right hand side is the new form of the
diffraction term. The second term allows us to correct for propagation
through regions of lateral inhomogeneity (provided we know the form of
v ). These two terms have been treated in detail in previous papers,

but the final two terms involving Gz » are unique to the stratified media

transformation.



We now look at these two terms,

PV (2) ¥, (2) PV @7 () V(@
Uprer = - 72, 2 Uxr — | ) R LAY

2(1-p v (2)) 2(1-p v (2)) 2v(2)

andseparate the operations

pv (2) \-fz(Z)

Uly oy = - u!, (4.17a)
z't 2(1_132‘—72(2))2 X
- - -
pv(z) v, (2) v (2) ' |

Uz't' = - + ] Ut' (4.17b)

2 (1-p%%2(2)) 25(2)

To equation (4.17a) let us transform out the t and x
dependence, and to equation (4.17b) let us integrate with respect to t .

Then, recombining the equations we have

P GZ(Z) v(z) k_, pZG(Z)GZ(Z) v, (2)

v, = -{ ( ) + + Ut (4.18)
2 (1-p52) 2 w 2(1-p252(2))  2%(2)

To determine the function of this combined term, we look at the
last term in the coefficient, This takes the form,
v, (2)

U =- U
z 2v(z)

which has solutions

§(z+Az)]1m
v(z)

U(z) = U(z+Az) |

and is clearly an amplitude correction for transmission across a
region of velocity gradient.

Without permuting terms, we rewrite equation (418) in the form,

vk ,

g = Lag(z, p, =) +a,(z,p) +2,(2) 10" (4.19)
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The factor a

1 is a function only of 2z and will be non-zero

for even the simplest case, being vertical incidence ( p=6=0)
of a plane wave front onto an interface. This is shown in Figure 4.7a.
The factor a, is a function of both z and p , and will be
non-zero only for p#0 , Figure 4.7b shows the simplest case of a non-
zero a, : a plane wave front incident on an interface at an angle given
by the slant frame transformation (i.e., 8 ) .
The factor ag is a function of z , p, and kx' . In addition

to a sensitivity to z and p , as with a, , it is also sensitive to

a non-zero kx' (i.e., a non-zero B/SX, ). The incident wave front

of Figure 4.7b follows a curve x' = constant, so that 3/3X, = kx' =0
for this case, The factor a3 is therefore sensitive to deviations from
the ideal incident angle, 6 . Figure 4.7c shows a simple case of a

distorted (i.e., non-planar) wave front impinging on an interface for

which case a is non-zero.

3
At this point a disclaimer should be made in regard to the

interpretation of ( a; + a, + a

9 3 ) in equation (4.19) as a

transmission coefficient. It will be true only to the extent that the
gradients of density are everywhere zero; any non-zero density gradient
will change the form of equation (4.18)., However, we will not reformulate
the problem to include the density because we do not foresee any
advantages to including the transmission terms (equation (4.18)) in

our difference formulation of the transformed wave equation (4.16).

These terms may be considered amplitude correction terms, and although
they may be interesting in some modeling cases (for example, modeling

the dim regions below bright spots), they will be ignored for our

applications.
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Fig. 4.7a. The simplest case of vertical plane wave incidence (8=p=0)
for which all but a; is zero in equation (4.28).
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,///Yf7;/, a2
a, =

Fig. 4.7b. Plane wave incidence at the coordinate transformation angle 6

for which both a; and a, are non-zero in equation (4.28).
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Fig. 4.7c. Non-plane wave incidence at the approximate coordinate transforma-
tion angle 6 showing a simple situation where k_, (or equivalently,
D;, ) is non-zero, causing aj along with a and a, , to be non-

zero. The factor a is therefore sensitive %o deviatIons from the

transformation angle © .
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Dropping these transmission terms leaves us an equation of the

form

<t

ber = B2 (1 - @)

(4. 20)

1 1
2(z)  VP(x.2)

v(z)
2(1-p%52(2))

)
showing that we may apply standard wave equation techniques to the migra-

tion of slant frame data in a depth dependent velocity medium.

Strong Lateral Velocity Inhomogeneity

Migration of data in regions where the acoustic velocity is only
a function of depth need only concern itself with wave propagation
effects on the upcoming wave. This is true even when reflectors have
arbitrary structure, and is due to the fact that the downgoing wave is
subject only to transmission effects.

When the subsurface velocity becomes strongly laterally variable
to the point that the downgoing wave becomes multibranched, then
a complete migration picture must explicitly consider both the
upcoming and downgoing waves.

An equation like (4. 20) can be used directly on the upcoming wave
to downward continue it to depth through any complicated velocity medium,
but this process will reveal true reflector structure only if the down-
going wave was a true plane wave when it was incident on the reflectors.
The slant stack process which we have been discussing creates plane

waves at the surface, and they may or may not remain so at depth.



89

Figure 4.8 shows an example of severe sea floor topography which
will distort a downgoing wave front because of the severe lateral
velocity variation. We begin by defining a "datum plane wave' at some
depth zy5 below the sea floor on a mesh in a computer. Then using an
equation like (4.20), project this wave back up to the surface z,
going through the severe lateral velocity variations.

The resulting wave field at zq will be the downgoing wave,

D (zo, s, t ), that we will wish to synthesize at the surface by a
generalized slant wave stack. We must do a wave stack of the surface
gathers so that each shot is "fired" in the proper sequence

and with the proper amplitude so that the desired downgoing wave field,
D (zo, s, t), is created just below the surface.

In the notation of equation (2.7), the trace P' (go, t') resulting
from the wave stack on a gather to produce downgoing wave D (zO, s, t)
is given by

P’(go, t') = L D(.zo, s, t'-1) P(go, s, T) (4.21)
S,T

where P (go, s, t) 1is the common geophone gather at gy -
Equation (4.21) defines the generalized wave stack.

When the wave stack (4.21) is done on the surface data, equations
like (4.20) can then be used to downward continue the upcoming wave to
the reflectors, since we know they have been illuminated by a plane
wave front. The combination wave stack described in (4.21) followed by

wave equation migration using an equation similar to (4.20) constitutes

a complete and proper migration.
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Figure 4.8. In order to achieve a downgoing plane wave at the datum

depth Z; » another wave "desired excitation" must be initiated at

zO . Th

e "desired excitation" may be computed by projecting the

"datum plane wave" up through the sea floor topography.
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Doherty's (1975) result showed that migration with an approximate
velocity prior to a complete velocity estimate will render the estimation
structure independent. The method of this section, which involves
migration of both the upcoming and downgoing wave permits prior
migration to become a more generalized procedure. Any information on
strong lateral velocity variations can now be included in the pre-
velocity analysis migration to thereby reduce its distorting effect on
velocity estimation. Severe sea floor topography is the most likely

situation in which the above procedure may be desirable.



