Chapter 3. Velocity Estimation in a Nearly Stratified Earth

The previous chapter showed that ellipses in slant frames replace
hyperbolas in standard coordinates, and indicated that a parallel
velocity estimation scheme can be developed for a layered media earth
model. We will demonstrate in this chapter that this is indeed the
case.

In addition, while allowing the velocity to be a function only
of depth, we will relax somewhat the restriction of zero dip reflectors.
In standard coordinates, the transformation to a common midpoint
coordinate frame effects a first order dip correction. In slant frames,
a first order dip correction is effected by a transformation to
interpretation coordinates. These were defined in Chapter 2 and are
derived for the case of a depth-dependent velocity in this chapter.

A Root Mean Square Velocity Theorem for Slant Frames

Dix (1955) showed that with the assumption of straight line ray
paths in the subsurface and the acoustic velocity a function only of
depth, that in the case of horizontal reflectors a velocity estimation
procedure which looks for coherence along hyperbolics will yield a
root mean square velocity. That is, if the trajectory of a single

event is assumed to be of the form

t = t,. + = (3.1)

with v some constant, then provided all ray paths are straight,

t

0

22 1 2 - 2

v = E-S v (tO ) d t0 = Voo (3.2)
0 0
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where the integral is done over a vertical ray path. Since we cannot
expect perfectly straight ray paths for any but infinitesimal offsets,
the straight line ray path approximation is also known as the small
offset approximation.

As in the previous chapter, the coordinate tO is the two-way

vertical travel time to a reflector at depth, =z . We generalize it

here to a depth-~dependent velocity.

z

= ; dz

ty = 2 X v (2) (3.3)
0

or, conversely if we re-express the velocity at some depth as a function

of the variable, t that is, if

0 b

v(z) = v'(to)
then
L (O
z = —z-g v'(to) dto (3.4)
0

In subsequent derivations, the primes on functions of t0 will
be dropped to simplify notation.

We shall now derive a root mean square velocity theorem for slant
frames using only the straight line ray path approximation. Figure 2.8
shows the basic geometry of the slant frame. The stack has been done
over some fixed ray parameter, p , giving us a plane wave at constant
8 for velocity constant, In the case of a depth-variable velocity,

the stacking parameter, p , will remain a constant for a single ray

path, The slant frame time coordinate, t' , is defined by
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Figure 3.1, The travel time curve showing t' versus p for a constant
velocity medium. The intercept at p=0 is t' =t0 s Where tO maintains
the same meaning as in CDP geometry: the two-way vertical travel time. The
intercept at t'=0 is p=1/v,where v is the (constant) material
velocity. The "family" of elliptical travel time curves for many reflectors

.

all have the same intercept at t'=0 » but have a unique intercept at p=0

< f >

Figure 3.2. A possible ray path for a more realistic velocity which is a
function of z . The small triangle relates some important differentials

at depth, =z . The straight upcoming path represents the straight line

ray path assumption.



46

t' = t-fp (3.5)

Now for a constant velocity medium, we recall the following

equation from Chapter 2.

P2V2 )1/2 (2.9)

1
£ .0 cos§ = (1-
tO t

Figure 3.2 shows a ray path in a depth-variable velocity medium.
We make the assumption of a straight line ray path at some angle ©

in the figure, and write

t
] —~—
E_ = 9 . sF = (1_p2‘72)1/2 (3.6)

0 t

An equation like (3.6) was derived for a constant velocity medium,
and we can expect the trajectory of an event in (p,t') space to
follow this functional dependence only in that case. However, if we
force the trajectory of an event in a depth-variable velocity medium to
follow the form of (3.6), then of course we will find that v will be
a function of p . Making the claim of a straight line ray path is
equivalent to specifying v to be a constant. However, by forcing
v to be constant we will find that (3.6) describes our event closely
only when the offset £ 1is small (or equivalently, when p is small),
and thus is also called the small offset approximation.

We now rewrite (3.6) in the form

\
EE- = cos2 6 = 1 - p2 v (3.7)



47

and combine it with (3.5) to obtain

t—tfp=l_P2‘—72
or
i o L2352
t p
or
-2 f
v = b t (3.8)
Observing Figure 3.2 again shows that we can express the offset
as
'z
f = 2 S tan6(z) dz (3.9)
0

or, using the transformation of (3,4).

o
f = S V(to) tane(to) d tO
0
t 2
) S 0 pv (to) d tO (3.10)
1/2 )

o Ay

Note that in expression (3,10) the denominator changes more slowly
with a change in v than does the numerator if p << 1 . Since we are
using the small offset approximation, we take the denominator outside

the integral.
t

0 5
73,172 S v (to) d t0
0

e

(3.11)
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which, when combined with (3.8) gives

o
72 = 1 g V2(t0) dt
= 0
t cos®
0
t
= L g 0 V2(t Y dt
t0 0 0
0
2 v (3.12)

showing that the root mean square velocity is measured in slant frames
in the same sense that it is measured in standard coordinates.

Interpretation Coordinates in Stratified Media

The concept of interpretation coordinates was introduced in the
previous chapter. The horizontal interpretation coordinate, x is
earth-based and permits us to display data with a common reflection
point (for non-dipping reflectors). This performs the same function

as the transformation to common midpoint coordinates from common shot

or geophone gathers. We now give the transformation from slant frame

coordinates to interpretation coordinates for a depth-dependent velocity.

The horizontal interpretation coordinate was given in Chapter 2
as

x = x' - Ax(2) (2.11)

where Figure 2.13 shows that Ax is identical to f£/2 , the half-

offset.



The previous section on root mean square velocity derived an

expression for the offset as

z
f(z) = 2 S tanb(z) dz 3.9)
0
t Z
0 pv (t)dt
0 0
= X (3.10)
o et
so, since Ax(z) = £(z) /2 , we have
z
x = x' - S tanb(z) dz
0

1 t0 P v2 (to) dto
= x' -3 (3.13)
2 S 2.2 1/2 :
o (ApVI(E)
which gives the transformation equation for the horizontal interpreta-
tion coordinate which we would like to express in terms of t' rather
than tO .

Turning our attention momentarily to the interpretation time

coordinate transformation, we write from Figure 3.4

dt = = cos 6 dt (3.14)

where we recognize that 6 is a function of depth. We have also that

t = t'+fp

and

dt = dt' + p df (3.15)
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since by staying on a ray path dp=0 . Therefore,

dt

cos 6 dt' + pdf ]

and

dt

cos B[ dt' + cos8® sinb tane d to]

having used equation (3.10).

Simplifying,

2 .

(1 - sin"8 ) dt0 = cosH dt

or !

R G U

0 cos6(p,t')
0
t‘

dt'
= S (3.16a)
22 1/2

o apvie,ent/

which is the desired transformation for the time coordinate t'> tg -
Incorporating (3.16a) into (3.13) gives the desired horizontal

transformation.
]
a v (p,t")dt"
p 5,2 (3.16b)
0 (I-p™v (p,t"))

-1
2

Equations (3.16) embody the interpretation coordinate transformation
x',t') » (x,to) in a stratified media v=v(z) .

The results of the previous section allow us to express (3.16)
in terms of an rms velocity if we choose to make the straight line

ray path assumption



2 1y gt
prms(p,t )t

x = x' - > 3 (3.17a)
_ '
2(1-pv_ (pst"))
and
t'
£ = (3.17b)
0 2 2 v\ 1/2
(1-p*v,  (p,t")
Recall that the transformation to interpretation coordinates
(x,to) require an exact knowledge of the depth-dependent velocity,
v(z) . If only an approximate velocity is available v(z) , then we

have a transformation to approximate interpretation coordinates,

(x, Eo ).
tl
” ) ~2 ' '
x = x' - S PY é?;t ) dt (3.18a)
o (@-pvi(p,t"))
t'
» dt'
£, = (3.18b)
0 S 242 172
o @ e, ent

Let us now summarize the scheme which we have implied in this
section to estimate velocities using interpretation coordinates. We
have slant frame data in (x', p, t') coordinates with no velocity
information,

We wish to pick a trial rms velocity, v , for which we will
measure coherency along some trajectory which it predicts in order
to compare its closeness to the true velocity. Begin by picking some

-~ ~ ~

value of the approximate interpretation coordinate x , say X =Xg >

which will be held fixed. Then for some trial rms velocity, v , and

51
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for some time point, tO , defined at p=0 , we have the trajectory

defined in (x', p, t' ) space to be

Az '
X' = % Bmz_zgf_ (3.19a)
2(1-pv")
. p v2 £
= x — (3.19b)
O 2a-p%%HY/2
p = p
e o= £ (1 2 32 41/2 (3.19¢)

with p chosen as the independent variable.

Note that the transformation of (3,19) changes with each new trial

~ ~

velocity v . Equivalently, for a single choice of Xq and tO s

each value of v defines a unique trajectory in ( x', p, t' ) space.

Estimation of Interval Velocities in Slant Frames

If two reflectors exist, one at depth zy s and one at
zq + Az  we would like to be able to make an estimate of the velocity
in the interval Az directly from the data., Let us assume that in
the region =z <zq the velocity is an arbitrary function of depth only;
i.e., v=v(z)#v(x,z) . We further assume that in the interval Az
the velocity is constant; i.e., v(zl) = v, = constant. If Az
is so large that the assumption of a constant velocity is poor, then the

results of an earlier section let us claim that any velocity which

we measure shall be the root mean square velocity for the interval,
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Figure 3.3 shows ray paths for two horizontal reflectors in a
slant frame, The two downgoing ray paths are through an arbitrarily
depth-dependent velocity, but will at all depths be parallel because
all downgoing energy has the same ray parameter, p .

We write for the reflector at zl

t! = - f

1 ty (3.20)

1P

where, as before, t' is the slant frame time coordinate and t is
the shot to geophone time, We now write the above equation for the

reflector at zq + Az,

(ti+At') = (t; +bt) - (£, +2f)p (3.21)
and subtracting the two equations,
At' = At - p Af (3.22)

Now we have from the geometry of Figure 3.3,

At = —~2——Az—e (3.23a)
v, cos by
and
Af = 2 Az tan 6 (3.23b)

1

where 61 = 6(z1) .



54

v(z) # v(x,z)

¥

A
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Figure 3.3. Ray diagram in slant frames for interval velocity estimation.
Depth-dependent velocity above zq arbitrary but independent of x .
Differences in slant frame arrival times at various values of p allow

interval velocity estimation. See figure below.
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Figure 3.4. Two events on a p-gather which may be used to estimate the
interval velocity between them. The data in this gather should be at

a constant value of the approximate interpretation coordinate, x .
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Combining equations (3.23) with (3.22) gives

At' = ;_%525*' - 2 p Az tan 9

1 1 .

2 Az cos 61
= Ty, (3.24)
1

by trigonometric identity.

Now rewrite (3.24) twice for two different values of P .

2 Az 2 2 .1/2
Ati = v, [ 1~ P, V] ] (3.25a)
and
2 Az 2 2 .1/2
L. iemcton -
Atj v, [ 1 pj vy 1 (3.25b)
then dividing (3.25a) by (3.25b),
, _.2 .2
Aty [ 1-p; vy j1/2
At! 1- 2 v2 (3.26)
J Pj 1
or . by rearranging the equationm,
AtiZ—AtJZZ 1/2
vy o= 1 7 ] (3.27)

2,.,2 2, .,
pj Ati. - piAAt i

which gives an expression for the interval velocity, v, , as a function
of the time intervals Ati and At; for two values of p , P,
and pj . Figure 3.4 shows the relationship among the parameters.
More values of p than two can be accommodated into an expres~
sion like (3.27) by considering them to be redundant information and

using a method such as least squares. However, in the field data

example in this chapter, six values of p were available, but only



two showed the reflections clearly. 1In other situations, severely
angle-dependent reflection coefficients may result in only a few
values of p showing clear reflections, and thus a simple equation
like (3.27) may often be the method of choice,

In many cases we will wish to make measurements of the time
intervals At' such that they represent reflections from a common
depth point for flat reflectors, This is desirable, for example,
when reflectors show poor lateral continuity, or to make a first
order correction when gentle dips are present. (Higher order
corrections, requiring migration, will be discussed in Chapter 4.)
We therefore wish to measure At' for all values of p for a
fixed value of x . Since, the transformation x'e¢sx can be done
exactly only with perfect knowledge of the depth-dependent velocity,
we must use a velocity estimate for an approximate transformation
x‘ao; in order to make a first measurement of the time intervals
At' . The resultant velocity can then be used in a new transformation

A~

x'e»x and subsequently to a refined velocity estimate.

Four values of x' must be calculated for each of the two

reflectors at each of two values of p . x' can be calculated from a

transposition of the previously derived interpretation coordinate

transformation

?

” p - \Arz( t') de!

x' = x +-2—S s (3.28)
o =P vi(p,t"))

where %0 is fixed.
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It appears from equation (3.28) that the value of t' must be
known in order to make the transformation. Again, an approximate
value must be introduced into the transformation. The assumption that is
being implicitly made in this derivation is that the reflector dips
will be low enough so that any At' measured from the data will
be only weakly dependent on x' .

A Synthetic Data Example

Figure 3.5 and 3.6 show a synthetic common geophone gather and
the p-gather that was created from it. The noise was obtained from
field data so that it would have normal spectral characteristics.

The events on the gather appear at half-second intervals
beginning at tO = .4 seconds, and all have a characteristic velocity
of 5700 ft/sec. The waveforms used were symmetric with no d.c.
component, and the dominant wave length sampled at about 8 points per
wavelength. The sample interval was 4 milliseconds. The waveforms
are identical and of equal strength everywhere on the common geophone
gather.

The slant stack was done using the end effect reduction and anti-
aliasing scheme described in Appendix A. The stacking velocity was
5700 ft/sec and the A0 parameter was 30°

A significant improvement in signal to noise is seen on the p-
gather. This is consistent with the claim made in the previous chapter
that the slant stack is a partial coherency stack.

Figure 3.6 shows the mute which was applied to the p-gather. This
allowed us to keep only those regions of the gather in which real

coherent energy was present. Close examination also shows that the
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noise is somewhat coherent from trace to trace in the p-gather, indica-
ting that we are apparently over-sampled in p-space.

Figure 3.7 shows the velocity profile using all the data in both
frames (after the mute in the case of the slant frame). The coherency
measure, C (to, v) , was a partially normalized sum over each
trajectory (a hyperbola in the case of the standard geometry, and an

ellipse in the case of the slant frame).

t0+6t/2 9
X Z P
t0—6t/2 trajectory
¢ (tg¥) = 1y F5t72 172 (3.29)
z X P2
tO—Gt/Z trajectory

where P is the data in either frame (i.e., P(f,t) or P(p,t") ).
The outer time gate, &t , was 10 milliseconds.

Figure 3.7 shows that we can expect to make a velocity estimate
in the slant frame, but we appear to have raised the noise level in

the velocity profile somewhat.

Figure 3.8 shows velocity profiles for the two data displays having

used only 5 traces, equally spaced, in each coherency summation. In
this comparison the overall noise level appears to be higher for the
standard geometry.

We conclude from this trial with the synthetic data example that
1) a velocity estimation can be done in slant frames,
2) when using all traces in standard geometry and a similar number in
slant frames, the signal to noise ratio in the velocity profile is

comparable in the two methods, and
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3) when using only a few traces in the velocity estimate, the slant frames
appear to give a higher signal to noise ratio.

A Field Data Example

A previous section of this chapter discussed the calculation
of interval velocity, and determined that the velocity in the region
between two reflectors could be calculated from data stacked over a
minimum of two values of p . We will use this result to estimate
an interval velocity from the field data of Chapter 2.

Figures 2.16 and 2.17 show slant sections for p=0.03 msec/ft
and 0.05 msec/ft. At approximately 2.5 seconds an event can be seen
on each section, labeled "event'", which is not apparent on the CMP
stacked section (Figure 2.14). This is evidently very angle-dependent
primary energy, since it cannot be seen on any of the other four
slant sections. We shall calculate the velocity between this event and
the sea floor primary.

The necessary relation derived earlier for two values of p is

At!2 - At!2
i h|

2, ,2 2
ijti - pi At

1/2
) ] (3.27)

J

where the interval velocity, vy s is taken to be constant. Applica-
tion of (3.27) is straightforward, but we need to determine at what
value of the horizontal coordinate, x' , the arrival times, t' ,
should be measured.

For a first guess at the horizontal transformation x'é® x , we
will choose that which the data has already undergone before plotting,
i.e., using water velocity. If v is water velocity (taken to be

equal to 5000 ft/sec), then the horizontal transformation x'<h>xw

that the data has undergone is given by
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v2
. v dt’
XW = X' —% S ~—‘Z—2“ (3.30)
2
pvVv t
2(1-p VW)

and we will make all measurements of At' at some X, = constant.
Since we have no horizontal scale on Figures 2.16 and 2.17, we have
taken X, = constant to be that trace at which the dead shot intercepts
t'=0 (note that XWF=X' at t'=0 ) . Figure 3.9 shows this
schematically.

Now we are prepared to make a first measurement of time intervals.
We wish to obtain the intervals At' , but the time scales in the

figures have also been transformed at water velocity according to

t'
t = ——— (3.31)
(l—pZV£)l/2

Since we will measure AtW , Wwe rewrite equation (3.27)

At'? - At!2
i i 1/2
5 3 2.7 | (3.27)

145 1
ijti piAtj

v o=

2 2 2 2 2
: Atw’i(l—piv -Atw’j(l—pjvw) :
2 2 22, 2 2 22
ijtw,i(l—pivw)—piAtw’j(l-pjvw)

1/2

(3.32)

(.9775)At> . — (.9375)At2 | 1/2
- w,i W, j 1

(.9775)(.OOOOSSec/ft)zAté i—(.9375)(.OOOOBsec/ft)zAté ;

where P; is taken to be .03 msec/ft and pj==.05 msec/ft.
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Figure 3.9. A schematic representation of slant sections of Figures
2.16 and 2.17. The horizontal and vertical scales have already
been transformed using water velocity from (x',t') to (xw,tw)

We wish to measure At' at a fixed value of x , but as a first
guess we measure AtW at a fixed value of X 5 as shown. The
figure shows that the value of X chosen is such that a particular
"dead shot" trace intercepts it at twﬁ=0 . The interval Atw

is then converted to the desired interval, At' , by the transforma-
tion

v _2.2.1/2
At Atw (1-p v, )

where v, = 5000 ft/sec.
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Measurement of Atw yielded 1.07 sec and 0.92 sec for the i
and j sections respectively, leading to a first guess interval
velocity

v, = 12,600 ft/sec

For the correction to the x-shifting, we incorporate the above

value for vy into the integral

tl
: ~2
x!' = ;( +_E g v (t')dt'
2 . 1-p2§2(t')
2 ' 2 ' ~ !
= % + P VW'(tsea floor) + ! (tevent sea floor)
B 22 2 2
2(1-p vw) 2(L-p Vl)

This correction on the x-shift allows a second estimate of the velocity
to be made.

The new values for AtW are

1.03 sec for p=.03 msec/ft

At =
v 0.80 sec for p= .05 msec/ft

where we had to pick a new fixed value for x , so that the new shifted
horizontal position would be within the finite lateral extent of the

event. This yielded a new velocity estimate of

vy = 14,600

which differs from the first estimate by 16%. The 16% correction is
somewhat large because the event is dipping.

The refined estimate of vy is perhaps unreasonably high and

suggests the question of whether or not the event is indeed primary

energy. The propagating angles in the region with velocity vy

become 26° and 47° for the smaller and larger p values respectively.
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Although the values are large, they are far from approaching critical
angle.
The interval velocity calculations were done using theory developed for

horizontal layering. To estimate the perturbing effect of the dip of the

event in question on the velocity estimate, we borrow a result from the

next chapter. For an event of dip ¢ , the travel time curve in slant

frames will be
— = cos(8+¢) (4.1)
0

where té is the zero offset two-way travel time from some datum and
at a fixed horizontal-coordinate (earth-based). The datum shall be the
sea floor.

An interval velocity relation can be developed with the help of
(4.1) 1in a parallel manner to the treatment of horizontal layers.

We use (4.1) to write a generalized form of equation (3.26)

Ati cos(6i+¢>)
AtJ! - cos(8j+¢) (3.33)

cos ei cos ¢ — sin ei sin ¢

cos Gj cos ¢ ~sin ej sin ¢

2.2.1/2
(l~pivl)

2.2.1/2 .
(l—pjvl) cos¢>—pjvl sin ¢

cos¢ ~ P.Vvy sin ¢

or

At! (1—-p%v2 1/2_ p,v, tan¢

i il i'l

T = (3.34)
At! (1- 2y 2 s

j Pyv) PyVy



which is a transcendental equation in v, with all parameters known

1
except dip ¢ . The dip of the event was estimated from the two slant
sections assuming them to be zero offset sections when displayed in

( XW, tw ) coordinates. With the refined estimate of vy used, the

dip was calculated to be

15.7° for p

0.05 msec/ft

15.2° for p

0.03 msec/ft
A final value of
¢ = 14.5°

was chosen as an extrapolation of the two above values to p=0
With the above value for ¢ entered into the transcendental

equation (3.34), v, was calculated to be

which is in good agreement with the second iteration using the theory
for horizontal layers.

Figure 3.10 shows CMP gathers for the far right region of the
section where the sea floor primary arrives at approximately 0.4
seconds. The geophone group spacing is 220 ft and the critically
refracted energy shows a characteristic velocity of 13,000 ft/sec.
Although this is somewhat smaller than our second iteration estimate
for the interval velocity, it is at a shallower depth of burial and

at least suggests higher velocities than one normally may expect.
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The above calculations seem to confirm that the "event" was
indeed genuine primary energy, and has served to demonstrate our method
of interval velocity estimation from slant sections. In the case where
energy from reflectors is angle~dependent, this method permits taking
advantage of the selective illumination angle characteristic of slanted

plane wave sections.



