Chapter 2. Coordinate Systems and Data Displays

Plane wave front synthesis from reflection seismic data requires
the introduction of a new set of coordinates. 1In this chapter we
will investigate alternative self-consistent coordinate systems which
describe the data when it is organized as a collection of plane
wave fronts. Seismic sections generated by plane wave synthesis will

show themselves to be similar in appearance to common midpoint sections.

Standard Coordinate Frames

The standard recording geometry of reflection seismology is
shown in Figure 2.1. A single explosive source and many geophones
(commonly 24 or 48) are arranged along a line on the earth's surface.
The distance between contiguous geophone positions is constant. A
single "experiment' is then performed which involves recording a
seismogram at each geophone position immediately subsequent to
discharging the source energy.

We shall define s to be the horizontal coordinate of the shot,
and g to be the horizontal coordinate of the geophone. Two other

descriptive coordinates can be introduced by the relations,

£ = g - s (2.13)
y = %& (2.1b)

where f 1is the offset between a shot and a geophone position, and y

is their midpoint.
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Figure 2.1. The geometry and data display for the common shot gather. The

data display is the same as one would expect for the CMP geometry below

as long as reflectors are flat.
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Figure 2.2. The common midpoint (CMP)

geometry.

Figure 2.3. Geometry for two successive

experiments showing data collection

redundancy.



For the single reflector of Figure 2.1, the arrival times t

of the reflected energy to the geophone positions is described by

2
2 2 f
£ = t, +—Vz (2.2)

where tO is the zero-offset travel time and v is the (constant)
acoustic velocity. Equation (2.2) assumes that the reflector is
horizontal. Dipping reflectors will be discussed in some detail
in Chapter 4.

Note that equation (2.2) describes the travel time curve for
both the geometry of Figure 2.1 with the shot coordinate s constant,
and the geometry of Figure 2.2 with the midpoint coordinate y a constant.
The data displays shown in Figures 2.1 and 2.2 are created by laying
seismograms side by side with time increasing downward, and offset
increasing to the right. They will be described as common shot and
common midpoint (CMP) gathers respectively.

The geometry of Figure 2.2 with no other ray paths than those
depicted cannot be realized from a single physical experiment. Rather,

5 individual experiments are required: shot s, must be fired with

1
only geophone 8y listening, then S, with only g, s etc. This
is achieved in the field by a high redundancy level using the geometry
of Figure 2.1. Figure 2.3 shows how this is achieved by picturing
two sequential field experiments. The ray paths from shot position $1
are shown as solid lines. The entire experiment is then moved to the
right by one-half the group interval and a second experiment is performed,

resulting in the dashed ray paths. The process is continued in this

manner creating seismograms of all offsets for any midpoint.
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Figure 2.4. This diagram shows the relations among the horizontal
coordinates y,f,s, and g . All axes are parallel to the
path of the boat which moves in the +x direction. The five
parallel lines show the position of the receiver cable for five
consecutive shots.

Each point represents a seismic trace. The display modes
common midpoint gather and a common offset section are shown.
The common shot (geophone) gather is data along a horizontal

(vertical) slice.
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A convenient way to display this "multi-fold" data is shown in
Figure 2.4, with each dot representing a single seismogram.

The Slanted Plane Wave Stack

Consider a common geophone gather. This is seismic data in
(f,t) coordinates for a constant geophone position, g . (This would
be data along any line parallel to the s axis in Figure 2.4 .)
Let us now instead of visualizing a collection of ray paths from each
shot to the geophone, visualize a spherical wave front diverging from
each shot position.

Figure 2.5 shows the geometry for a possible single experiment
which we could perform. If we placed a single geophone and an array
of shots as shown in the figure, and then fired all shots simultaneously,
we would be synthesizing a downgoing plane wave front by the super-
position of many spherical wave fronts. (More properly, we should be
discussing propagating cylindrical rather than plane wave fronts, but
for the purposes of this thesis we have assumed the earth to be two-
dimensional. Then, except for differing factors for amplitude decay due
to geometrical spreading, the two will be equivalent. Since visualizing
plane waves is easier than visualizing cylindrical ones, we will continue
to speak of plane waves.)

The downgoing plane wave can also be synthesized by a superposition
of many single shot-single geophone experiments. Let P(f,t) be
the data in (f,t) coordinates with g constant. We now perform

the operation

P'(t) = ¢ P(f.,t) (2.3)

where we are summing over the offset coordinate to produce a single

output trace, P' . This, by superposition, is equivalent to the
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Figure 2.5. If we have a single geophone and many shots, we can imagine firing
them all at the same time to create a downgoing plane wave in a single

physical experiment. For a line source in 3-D, the wave front is actually

cylindrical.
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Figure 2.6. We can create a downgoing plane wave at some angle, 6 , by
firing the shots with time lags. For a line source in 3-D, the wave

front is actually conical,
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geophone recording of the single physical experiment shown in Figure

2.5.

An interesting generalization of the above is to synthesize a

downgoing plane wave front propagating at some arbitrary angle, 6 , to

the horizontal.

Study of Figure 2.6 shows that the shot, S; » must be fired with

some time lag, 6t , relative to shot Sip1 ° If As = Sip1 T s; >
then
st = - 48 o (2.4)
VH H

where VH is the (constant in layered media) horizontal phase velocity
of the propagating wave front, and is positive for avelocity in the +x direction.
A relation well-known in seismology (see for example, Stacey,

Chapter 4) is that for a vertically stratified earth,

p = S8z _ 1 (2.5)
v(z) vy

where p is commonly referred to as the ray parameter, v(z) 1is the
depth-dependent acoustic velocity of the medium, and 6 and vy are
as defined above. The sign convention for P 1s such that p is
positive when Yy is positive, Equation (2.5), true only in a verti-
cally stratified velocity medium, states that the ray parameter thus
defined is equal to the inverse of the horizontal phase velocity, and
is independent of depth, =z . Thus, it is an invariant property of the

plane wave front as it propagates down into a layered earth.

Combining equations (2.4) and (2.5) we write,

St = p &f (2.6)
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f=g-s

Now we are in a position to synthesize a downward propagating
plane wave front with a particular ray parameter, p . We generalize
equation (2.3) to

n
P'(p,t') = T P(f,, t=t"+pf,) (2.7)
i=1 * *
Equation (2.7) gives us a transformation of data in (f,t) coordinates
with g constant to data in (p, t') coordinates. The summation
operation given by (2.7) will be referred to as a slant plane wave
stack, or slant stack.

Equation (2.7) is valid for both positive and negative values
of p for wave fronts traveling in the +x and -x direction
respectively. By invoking reciprocity when necessary we can always
have the wave front departing an array of shots and arriving at a
single geophone. The following table shows the sign conventions

for the case of a one-sided spread as in marine data.

Boat moves in +x direction }Boat moves in -x direction
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Note that equation (2.7) give us a method of synthesizing a wave
front from individual shot-geophone experiments, and that these wave
fronts will be planar only if the acoustic velocity is independent
of the horizontal space coordinate (call it x ). If, for example, we
are dealing with marine data where the velocity structure below the
sea-floor is very complicated, then what we have done is to create
a downgoing plane wave front in the water, but some undulating
wave front as it passes through the region below the sea floor.
However, even in a case where the velocity is extremely laterally
dependent we are still synthesizing propagating wave fronts, and
although they may deviate frombeing planar, we shall be able to extrapolate
them through space by methods based on approximations to the scalar wave

equation (see for example, Claerbout and Johnson, 1971).

Because the scalar wave equation deals with propagating wave
fronts, we must be able to create whatever data display with which we
are dealing by a single physical experiment if we are to use the
wave equation for any processing scheme. This is the reason that we
have not included the common midpoint gather as an optional coordinate
system over which to slant stack. There is no apparent way in which the common
midpoint gather can be created by a single physical experiment, and
therefore data created by slant stacking over the CMP gather likewise

cannot be created by a single physical experiment.
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Equation (2.2) a;a Fiéurés 2.1 and 2.2 indicate that the trajectory
of arrival times for a flat layer in a constant velocity medium as
a function of offset will be a hyperbola. Figure 2.7 shows a
common geophone gather from three reflectors. As indicated by equation
(2.7), the summation trajectories for a slant stack with ray parameter
P are straight lines with slope At/ Af = p . The dashed lines in
Figure 2.7 show the three particular summation trajectories which are
tangent to the hyperbolic events. These are the only occasions where
we expect the slant sum to register a significant contribution from the
events, because for a portion of the sum the phase will be coherent.
This will be demonstrated, rather than proved, in the final section

of this chapter and in Appendix A.
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The slant stack for this particular value of p will place the
three events at locations on the time axis shown in the output trace.
This resultant output trace will be one trace in our "p-gather",
which is also shown in the figure. We shall show shortly that the
slant stack transforms hyperbolic events into elliptical ones with
a p axis intercept at p = v—l , where v 1is the constant acoustic

velocity.

A particularly instructive exercise is to investigate the slant
stack for p = 1/v . In this case the dashed summation lines of
Figure 2.7 will be parallel to the direct arrival, shown as the
diagonal line from the origin. The direct arrival also marks the
asymptote of all three hyperbolic events. For this value of p ,
the only summation trajectory for which we will obtain a stationary
phase contribution will be the one which intercepts the origin, i.e.,
a summation trajectory coincident with the direct arrival event. 1In
this case our value of t' will be equal to zero.

What we have just done was to create a plane wave with ray
parameter equal to 1/v , that is, a horizontally traveling wave
from the shots toward the geophone. We have noted that in this case
we get an arrival at t' = 0 . This indicates that our t' coordinate
which we have identified with the slant plane waves, is equal to zero
when the wave front intercepts the geophone position. This observa-

tion permits us to make use of the ray path diagram of Figure 2.8.

bd
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V = constant

Figure 2.8. The slant frame geometry. The source is a downgoing plane

wave front at angle 6 to the horizontal, but for a geophone at

position g , the reflected energy from 2z emanates mainly from

0
shot position, s . The slant frames require the introduction of
a new time coordinate, t' = t-fp, where p = sin6(z) / v(z) =
constant is the ray parameter.

The wavefront is propagating in the +x direction, depicting

the geometry for a positive value of p , Reciprocity has been

invoked to reverse the roles of shot and geophone.
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Figure 2.8 shows a snapshot of our propagating wave front at
t' = 0 . Also shown is the ray path which will be taken by the
energy which will eventually reach the geophone position. Although
we have a propagating wave front, most of the energy arriving at g
will emanate from the shot position labeled s in the figure. Several
interesting relations can be inferred here. If f is the offset
between the gephone and the most important shot point, then the relation
between the shot to geophone time, t , and the arrival time, t' ,

in the slant frame will be

t = t'+fp (2.8)

The time difference, fp , between the shot-to-geophone time and
the slant frame arrival time is equal to the time it takes for the
horizontal phase velocity of the plane wave to travel from s to g .
This is consistent with p being the inverse of the horizontal phase
velocity.

If t0 is the two-way vertical travel time to the reflector,
then since our velocity, v , is constant, we have from the geometry

of the figure,

t'
o cos 0 (2.9a)

0

and

cos 9 (2.9b)

|
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Incorporating equation (2.5) into (2.9) we have

12

2 2
E_f +p v = 1 (2.10a)
%o

and

2

2
%+p Vo= 1 (2.10b)
t

Equation (2.10a) describes an ellipse in (p, t') space. It verifies
the form of the p-gather shown in Figure 2.7.

Figure 2.9 relates these various time coordinates in the original
common geophone gather. It can be seen here that the coordinates f and
t identified in Figure 2.8 relate to the offset and arrival time of
that region of the hyperbolic event which is tangent to the slant
summation trajectory. Thus, Figures 2.8 and 2.9 both show, but in
different ways, that most of the important energy in the slant frame
comes from the region around some individual shot.

Note that when a slant stack is done, nothing need be known but the
ray parameter, p . Except for some practical problems discussed in
Appendix A, there is no need for any velocity information prior to the stack.
Equations (2.10) then can be used to estimate velocity the same way
way equation (2.2) is used in the more standard geometries.

We emphasize at this point that the coordinates (x', p, t') are
output directly from the slant stacking process. For example, in a stack
over the common geophone gather in Figure 2.7, a single seismic trace is
output. This trace has a fixed value of p (given by whatever the slope
of the summation trajectory happens to be), and a fixed value of x'

(given by the geophone coordinate, g ). The time coordinate of the
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"shot spread"

N

Figure 2.9. A single hyperbolic event shown in a common geophone gather.
The line labeled '"p" shows the stacking trajectory, and its intercept
with the time axis defines t' for this particular event and stacking
parameter p . The intervals marked f and At can also be seen
on Figure 2.8 in real physical space. Figure 2.9 shows clearly the relation-

ship At = fp, and also t' = t - fp.
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output trace is defined to be t' . Thus, the simple operation of
the slant stack transforms data from either (s, £, t ) or (g, f, t )
coordinates to ( x', p, t' ) coordinates.

The Fresnel Zone

If the shot waveforms were perfect impulses, then the point of
tangency of the slant sum trajectory with the hyperbolic event would indeed
be a single point. 1In all practical cases the waveform is of finite
duration and the dominant wave length will specify a region of

tangency. The broad event of Figure 2.10 indicates the dominant period

in the waveform, and shows the region of tangency. We shall call this
region a Fresnel zone. Figure 2.11 shows the Fresnel zone for several
events. How large is the Fresnel zone?

Figure 2.12 shows a propagation path from a single shot to a

line of receivers. These receivers would actually be on the surface
with s , but we have mirrored their position across a subsurface
reflector. The maximum propagation distance for any frequency is Q
wavelengths, where Q 1is the attenuation parameter. We shall assume
that after this propagation distance, the energy has dropped so that
we can no longer detect it.

We require that to be in the Fresnel zone, the maximum deviation
in phase must be no greater than + 2n /3 from the receiver shown in
the centered position. A simple calculation shows that if we assign
Q = 100 to the earth, the angular deviation,  , is about 9 or
10 degrees.

This is only a very crude calculation, but it serves to show

that we should expect a data base reduction after the slant stack.
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range of Cb{b
tangency

Figure 2.10. Because the waveform is of finite length, the tangency of the

summation trajectory with the hyperbolic trajectory of the event will be

larger than a geometrical point.

-
f

£y
Fresnel
zone

Figure 2.11. There will be a region, called a Fresnel zone, within which events
and the summation trajectory will be tangent. The boundaries of the zone

change as parameter p changes.
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Figure 2.12. Our (arbitrary) definition of the Fresnel zone: Assume an
earth with a finite value of Q , the attenuation parameter. Imagine a
source of a signal with a dominant wavelength, and a line of receivers
which are a distance Q wavelengths from the source. We define coherence
such that the signals to the receivers must be within one-third period
of being time coincident. With the help of the diagram, the angle, &

b

of the Fresnel zone is calculated for Q = 100 .

Q

Q@ = 2 arccos (615) = 2 arccos (

100, -

103 9.5
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We can reasonably expect that we do not have a range of propagation
angles in our data of more than 0 to 45 degrees, because of the
finite geophone spread. If a single Fresnel zone encompasses approxi-
mately 10 degrees, we can speculate that 4 or 5 traces in the p-gather
contain all the information in the original 24 or 48 trace common
geophone (or common shot) gather.

This calculation ignores the effects of noise and other practical
complicating factors, but it gives an optimistic result which we can
modify subsequently. A 10 to 1 data compression is certainly too
much to hope for, but the slant stack is a partial coherency stack
and a very real data base reduction is expected. The next chapter
compares velocity estimates in slant frames for several data compression

factors.

Slant Plane Wave Interpretation Coordinates

Equation (2.7) indicate that we can transform recorded seismic
data into the (p, t') slant frame beginning with either common shot
or common geophone gathers. Rather than using the s or the ¢
coordinate depending on the sign of p , we introduce the coordinate
x' , which specifies the geophone position when the slant stack is
done over a common geophone gather, but the shot position when stacking
over a common shot gather. The physical interpretation of x' is
the surface position of a receiver picking up the reflected energy
of the downgoing plane wave shown in Figure 2.8. The slant frame
coordinates now become ( x', p, t' ) with the sign of p positive
when the plane wave front moves in the +x direction.

Consider the data in the slant frame for some fixed value of p ,

say P=p, - The data, P' (x', P=Py> t') , can now be described as

a "slant plane wave section", or '"p-section." This data display would

be the one of preference for geological interpretation, since it most
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closely resembles a cross-section of the earth. Figure 2.13 shows a
sample ray path for three flat reflectors in a constant velocity medium.
A p-section with this particular angle, 6 , would involve many traces
with the same ray path geometry.

The geometry of Figure 2.13 involves all ray paths which contribute
to the single trace at the surface position x'=g . The data trace
unfortunately does not represent reflection points directly beneath

the surface receiver position, x' . By definition, the coordinate

x' 1s constant along the upcoming ray shown in the figure, and we
would apparently like to define a new coordinate, x , which is constant
for a fixed horizontal position in the earth. Thus, =X would be an
earth-based coordinate.

As seen clearly from the figure, we wish to do a uniform shearing
of the data, the amount of which being dependent on the depth to the
reflector of interest. As can be seen in the figure, this is true

even in a constant velocity medium.

Let us write the relation

x = x' - Ax(z2) (2.11)

Now, if =z 1is the depth to a reflector, and Ax is a horizontal
dimension, we can immediately write, with the help of the simplified

geometry of the constant velocity medium, that

Ax(z) = =z tanh (2.12)

where 6 = arcsin(pv) = constant . Note that in the figure p and

Ax are negative.
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vV = constant

1.
z=z,
zZ=2z,

__—x'(Z3)~§*‘r———~—— Ax(z3)

x(z3)

Figure 2.13. Ray paths in the slant frame for three horizontal reflectors in

a constant velocity medium. Here the value of p 1is negative. The energy
received at the geophone is displayed as a single trace by the slant stack process,
but as seen in the figure really represents subsurface reflection points which
lie along a ray path. Points along this ray path all have the same value of

1

coordinate x' . Relations between x and x' are shown at depth z=0 and

z=2zq4 ,
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Recalling that tO is the vertical two-way travel time to a
reflector at =z , and re-expressing tan® , we can rewrite (2.12).

vt

0

PV
5 )

(l—pzvz

Ax(tO) = ( (2.13)

)1/2

Now we have an expression, given by (2.13), for the amount of lateral
shifting that we must do to the data as a function of the vertical
travel time, tO . This is not yet quite the desired situation,
since the data in our p-section is in ( x', t' ) coordinates, not

( x', tO ) . We must now combine equation (2.10a) with (2.13) to obtain

tl
"2) P‘Z’Z (2.14)
1-pv

Ax (t', P, V) = (

which is the desired result. Note that the transformation

k- o RV (2.15)
2(l—p2v2)
can now be done directly in the slant frame coordinates. We observe
also that we now require some input as to the true acoustic velocity.
Since the effort has just been made to derive a transformation of

the horizontal slant frame coordinate, x' , to an interpretation
coordinate, x , it is certainly reasonable to make the same effort to
transform t' into some other time coordinate more logical for display
purposes. As it now stands, we have a time coordinate, t' , which
for a particular subsurface reflector has a different value for each
unique p-section we create. A more reasonable time coordinate is ¢t

0 b

the vertical two-way travel time. We have already determined the



transformation equation for t' to but we rewrite it here.

ty s

2
1
o
or
£ (2.16)
£, o= —t 2.16
0 3 2.172
(1-pZvH) Y

Equations (2.15) and (2.16) together define a transformation from
( x', p, t' ) coordinates to what we shall call interpretation

coordinates ( x, p, t We note again that the coordinates

o)
( x', p, t' ) come directly from the slant stacking process.

When the depth-dependent velocity is known only approximately
(as is often the case), the transformation itself can be done only

approximately. 1If v is the velocity estimate, then the transformation

can be written

X = x' PV t (2.15")

and

t) = ———r (2.16")

The coordinates x and EO will equal x and t0 only if v=v .

The transformation with an approximate velocity, however, will serve

as a best guess until an accurate velocity function can be estimated.

A Field Data Example

In this section we show an example of slant stacks applied to

field data.
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Six simple slant stacks were performed on the data with no
provisions made to reduce end effects and aliasing. These practical
problems are discussed in the Appendix.

Three numerical values of the ray parameter, p , were chosen for
the stack ( p = 0.07, 0.05, 0.03 msec/ft, giving 6 = 20.5°, 14.5°
and 8.6° for water velocity). Recall that

sinb _ dt
v df

(2.17)

where © 1is the propagation angle from the vertical, v is the velocity
and (f,t) are the horizontal and vertical coordinates of the common
geophone or common shot gather.

The boat direction and the positive x axis are both to the right
in all the following sections. Positive values for p , then, imply
a wave front traveling down and to the right. Such sections were
created from common shot gathers. The negative p sections were
created from common geophone gathers.

The sections were transformed to interpretation coordinates before
plotting was done. Since we did not have detailed velocity information,
we used an approximate water velocity, v = 5000 ft/sec, for the trans-
formation. As a result, the sea floor primary reflection and its
multiple reflections are properly transformed, but the deeper primaries
are not. It would be this transformation that we would use if our
purpose was to predict and subtract deep water multiple reflections.

The CMP stacked section which was done by the company which supplied
the data is also included. The CMP stack is a summation over hyperbolic
trajectories for data in CMP gathers using a best estimate of the
subsurface velocities. This section also includes processing which

we have not done. For example, we have made no effort to suppress the



multiple sea floor reflections.

We are suggesting that using several p-sections for geologic
interpretation can be a useful supplement to a single CMP stacked
section. There appear to be some real features of the subsurface
reflectors which are apparent in some of the p-sections but not the
CMP stack. (These are described individually in the figure captions.)
This is not surprising as some reflectors have a highly angle-dependent
reflection coefficient. Each p-section is created by illumination
from some unique direction, whereas the CMP stacked section is a conglo-
merate of all available illumination angles.

The signal to noise ratio in a slant stacked section lies somewhere
between that of a single offset section and a CMP stacked section.

In the CMP stack all events add coherently into the sum, and if we are
dealing with a 48 trace gather (as we are with this data), the theoretical
signal to noise of the ratio of the stack should be V48 times that of
each individual trace in the gather. On the other hand, in the slant
stacked sections only events inside each Fresnel zone will add coherently
into the sum. If four or five Fresnel zones comprise the entire range

of propagation angles received by the geophones, then we have a signal

to noise ratio of the p-section which is V4 or V5 times less than

that of the CMP. 1In principle, we expect to be able to recover the signal
to noise ratio of the CMP section by summing all of the slant sections
together with appropriate moveout corrections.

There are some general features of the p-sections which can be

described here:



33

The wave front in the upper left hand corner of each p-section
shows the propagation angle of the downgoing wave in water.

There are a fairly large number of dead traces apparent in the
negative p-sections. These are due to shot misfires in the field. Note
that they are only readily apparent in positive p-sections because
these slant stacks were done over common shot gathers.

There is a region delineated in the left hand side of the p-
sections labeled "programming error." This problem affects only that

data bracketed.



Reverse Illumination

Throughout this chapter an implication in regard to the slant
stack has been that we will always create a plane wave traveling
down and toward the geophone in a common geophone gather. Although
this is certainly of interest most of the time, situations will arise
in which it may be desirable to illuminate the subsurface with a wave
traveling away from the geophone, as depicted in Figure 2.21. An
obvious case is one in which the desired illumination angle is close
to 90 degrees and thus would invite interference from the direct
arrival.

The procedure for synthesis by means of the slant plane wave
stack is shown in Figure 2.22. Notice that the only difference is
a change in the sign of P , the slope of the summation trajectory.

A complication that this procedure introduces is also depicted
in Figure 2.22. Unless the data is sampled very densely in the offset
dimension, spurious energy from aliasing may contaminate the desired

coherent energy from the stack. (See Appendix for an example of aliasing.)

This method may only be used, therefore, when spatial sampling is
sufficiently dense, and it presents itself as an argument for denser

sampling in the field.

41
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geophone cable

Figure 2.21. In the case of a steeply dipping reflector, we may wish to
illuminate it by constructing a plane wave traveling away from the detector.
(We have reversed the roles of shot and geophone by reciprocity.) This
may be desirable, for example, when the propagation angle of interest is
close to 90 degrees and we wish to avoid contaminating energy from the

direct arrival.

offset

contamination from
possible aliasing

C ‘Q\\\\‘
desired coherent

energy

Figure 2.22. The common shot gather from the earth model of Figure 2.21.
Our slant summation trajectory has a negative slope to enhance the energy
shown in Figure 2.21. Notice that unless the data is sampled very densely,

we are in danger of aliasing from events A and B



