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Expansion About Dipping Waves

by Jon F. Claerbout

We seek accurate rational approximations for the square root in

the semicircle dispersion relation for upcoming waves
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Once we have an accurate rational approximation to equation (1)
it is an easy matter to clear out the fractions and identify
( - iw, ik, ikz ) with ( Bt, ax, Bz ) and then we have an accurate

differential equation.

Define
vk
X = = (2)
So (1) contains
s = (1-x%)/2 3)

We have previously used the square root approximations

s, = 1 (4a)

s, = 1-3x° (4b)
) 1—%¥

= T L2 (4e)

Francis Muir has pointed out that the square root approximations

in (4) and generalizations to higher order may be generated by the
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recurrance
2
_ X
St T LT+ s, ©)
J
To check we presume convergence by setting Sj+l equal Sj in (5)
getting
2
S(1+8) = 1+5 -X
s = (1- X2 )1/2

The approximations Sj may be developed by a recurrance technique

for the numerators and denominators. Let

Ei
S. = Bj (6)

2
T. 2 T.+B., -X"B
i+l 1+ X _ i
B. T T.+B,
j+l 14— 3
B.
J
So we have the recurrance
T... = T, + (1L-X%)B, (7a)
jt+l h| |
B. = T, + B, 7b
jt+l k| h| (7b)
As a check we have
- _T _B
1 1 1
2 2 - x2 2
2 2
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Curves of phase velocity and semicircle wavefront approximations

are shown in Figure 1 . Figure 2 shows various hyperbola

approximations in (x,t) space and in the retarded-time space (x',t')

The program which generated these figures, along with a generalization

to slanted frames is included later. One of

the obvious features of

these plots is that the higher order approximations do an increasingly

better job with the steeply dipping waves. The trouble with the higher

order approximations is that they involve increasing amounts of computa-

tion. For that reason we will not consider a shift in the expansion

point of the square root in order to squeeze

out of the low order approximations. Figure

a little more accuracy

3 shows a semicircle

approximation which does not fit exactly at the point (k,kx)= (0, w/v)

Instead, it fits exactly at the points (k,kz) = ( + sinb

0° coseO Yw/v .

To develop such approximations we make some new definitions and

we generalize our definition of X for nonzero 8

s = sinb

0
c = cos 90
x = kv
cw
2 2
kv (2 s7 _ 2 s”
Y = ( w) — 3 = X-7
c c

In terms of these definitions the semicircle

becomes

(8a)

(8b)

(9a)

(9b)

dispersion relation (1)
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Figure 1. Phase velocity approximations to a semicircle ( kz/w, kx/ w ),

top. Group velocity approximations, equation (35c), bottom. All for

tangency angle '6L= 0
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Figure 2. Approximations to a hyperbola. All fit exactly at the apex
(6=0) . Top is the real (x,t) space (equation 35a), and bottom is the
computational (x',t') space (equation 35b), in which the hyperbolas are

shifted to be tangent to t' = 0 .
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Dispersion relation for best fit to dipping waves.

. (1-x2H)l/2

[1 - ( CZY_+SZ )]1/2

= - (1-82)- 2y /2

= -c (l-—Y)l/2

-- -2 -

Sl we have

v k

wce

Z

Il
|
=
1
+
~
[

(10)

(11)
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We can quickly convert this to a partial differential equation
in (t, x, z ) space, but we would rather have one in the retarded
time space ( t', x', z' ). The trick is to be able to define retarded
time t' in such a way that the shifting term [ the wz term in

(11)] drops out. To do this we define the transformation

t' = t + % z (12a)
x' = x (12b)
z' = z (12¢)

As we have seen, the chain rule for differentiation provides us

with
w = w' (13a)
k = k' (13b)
k, = k! - % w' (13¢)

Substitute (13) into (11)

2,2
S ) Wy Y g2 (14)

! v _ 9 = 5
w (kz v ) (et 2c ) v 2c

Recognize that a choice of o =c¢ + 52/(2c) eliminates the shift

term, reducing (14) to

U)' kl = lklz

z 2c
N | s 1.1 - _ NV o, 2
(-iw") (1 k) e (ik)

which inverse transforms to the partial differential equation

1 . A
Pz't' 2 cos 90 Px'x‘ (15)
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We note that a practical prescription for broadening the range
of angles adequately migrated is to over-migrate by a factor of
1/ cos 60. The error at k=0 is given by the departure of o from
1 . For 60 = 20° we find an acceptable o = 1.0019 at an over-
migration of 6% .

Rather than continue manual calculation it seems preferable to
develop a general technique and a program to generate the various schemes
along with their phase and group errors. Muir's recurrance for (3)

obviously works for (10) as well. So we just grab (7) with X2 replaced

by Y .

Tj+l = Tj + (1-Y) Bj (14a)

B, = T, + B, 14b
j+l J J (14b)

However, we don't really want T and B to come out to be
polynomials in Y ; we want them as polynomials in X2 . We could
compute the polynomials by (14) and then shift the origin with (9b).
However, we cam also substitute (9b) into (1l4) to get the recurrance

directly in terms of X2 .

_ 2 g2
Tj+l = Tj + [(1+ tan GO) X ]Bj
1 2
T, = T, + - X B. 15a
341 j ( 2 ) i (15a)
0
B = T, + B, (15b)

j+l N |
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Now we have obtained the dispersion relation approximation to (10)
in the form

. we T

Kk = - (16)
B(x%)

z v
To get into the retarded time frame we need to get rid of the
coefficient of X2 to the zero power in T . This is easily done as
follows:

11' _ _%(I(_XZ_)__E[‘_O)
2 v B(Xz) B0

(17)

where TO and B0 are the coefficients of X2 to the zero power in

T and B . Clearly c TO/B0 is the generalized value of o . We

now observe from (17) that

= 7 -3 (18)

This means that the hyperboloids in (x,t) space are shifted toward
t'=0 in (x',t') space.
The important thing about (18) is this: We have not yet proven

that the high order schemes which we are developing will be stable.

Earlier work proved that for 6=0 the 15° equation is stable. Experience

showed that the 45° equation was stable at 6=0 . We saw that for the
15° equation a choice of 6=20° just amounted to a 6% over-migration,
so there is obviously no instability there. It is my belief that the

fact that (18) is everywhere of the same sign (negative), which can
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be seen on the computer outputs, ensures that the differential equation
is stable so that stable difference schemes can be found, I believe this
because of the theorem in time series analysis that the group delay of

a causal all-pass filter is positive. This theorem is proven in my book

on pages 39-42.



